• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research reveals effective method to control algae growth on Hawaiian coral reefs

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: DLNR/DAR

Researchers with the State of Hawai'i Division of Aquatic Resources (DAR) and the Hawai'i Institute of Marine Biology (HIMB) at the University of Hawai'i at Mānoa found a management approach that combining manual removal and outplanting native urchin was effective at reducing invasive, reef smothering macroalgae by 85% on a coral reef off O'ahu, Hawai'i.

Globally, the health of coral reefs is threatened due to rising ocean temperatures and ocean acidification. However, local factors such as invasive macroalgae also pose a serious risk to coral reefs–monopolizing reef habitats, and overgrowing and smothering native species, such as corals.

Brian J. Neilson, Acting Administrator at DAR, and Chris Wall, doctoral candidate at HIMB in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST), and others tested a novel approach to curbing the abundance of invasive macroalgae on the coral reefs of Kāne'ohe Bay, O'ahu. First, divers manually removed invasive macroalgae with the assistance of an underwater vacuum system, "The Super Sucker." Then, hatchery-raised juvenile sea urchins (the Hawaiian native collector urchin, Tripneustes gratilla) were outplanted to graze on invasive algae to control regrowth.

In total, the team removed over 40,000 pounds of invasive macroalgae, outplanted 99,000 sea urchins, and treated nearly six acres of reef area over two years. During this period, invasive macroalgae declined in response to treatments, and importantly, there were no observed negative effects to important reef calcifiers such as corals and crustose coralline algae.

Unfortunately, there are often limited options for reducing invasive macroalgae without causing further environmental damage. Prior to this study, scientists at DAR, UH Mānoa and the Nature Conservancy showed the manual removal/urchin herbivory method worked at reducing invasive macroalgae in the laboratory and in small enclosures on the reef.

"This management approach is the first of its kind at the reef-scale," said Wall. "Our research shows promise as an effective mean to reduce invasive macroalgae with minimal environmental impact, while also incorporating a native herbivore to regulate a noxious invasive species."

"Coral reefs are an important part of the economy, culture, sustenance and recreation of Hawai'i," said Neilson. "Local action is instrumental in supporting the resilience of coral reefs. This study provides an important tool that can assist in the management and conservation of coral reefs."

"The surprise was just how effective this approach was at reducing invasive macroalgae over the two-year period," said Wall. "We were able to successfully leverage the rigorous, detailed science of prior studies to assist in scaling the management plan from an aquarium to an entire reef. One of the lessons here is that a well-designed management plan can reap significant benefits and lead to the most effective path forward, both logistically and financially."

DAR is continuing to monitor the reefs of Kāne'ohe Bay and the long-term effects of macroalgae removal and urchin herbivory on coral reefs. In addition, DAR and UH scientists are actively studying the influence of local weather and global climate phenomena, such as the 2014-2016 El Niño and global bleaching episodes, as drivers of changing coral and invasive macroalgae abundance through time.

###

Media Contact

Marcie Grabowski
[email protected]
808-956-3151
@UHManoaNews

http://manoa.hawaii.edu

Related Journal Article

http://dx.doi.org/10.7717/peerj.5332

Share15Tweet8Share2ShareShareShare2

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lung Ultrasound and Heart Index Predict Preterm Infant Outcomes

AI Delegation May Boost Dishonest Behavior

Prenatal Counseling of Trisomy 18 Heart Defects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.