• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research rethinks the evolutionary importance of variability in a population

Bioengineer by Bioengineer
October 4, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: creative commons

It's been long thought that variability within a population is key to population's growth and survival but new research questions that assumption.

Ariel Amir, Assistant Professor in Applied Mathematics at the Harvard John A. Paulson School of Engineering and Applied Sciences, and Jie Lin, the George Carrier Postdoctoral Fellow in Applied Mathematics, found that in an unchanging environment, variability can actually lower population growth in single-cell organisms.

"For decades, researchers have been looking at the wrong indicator to understand population growth rate in single-cell organisms in fixed environments," said Amir. "Researchers took for granted that variability in the time between a cell's birth and division was key to measuring population growth rate but we found that the evolutionary pressures on variability within a population are much more nuanced than previously thought."

This insight is important for characterizing the fitness of a population, which is useful, for instance, in understanding how bacteria respond to antibiotics. The research is published in Cell Systems.

Variability in single-cell organisms is characterized by differences in generation time — the time from birth to division — and differences in cell biomass growth rate. Seminal research in the 1950s found that variations in generation time — the time it takes from birth to division — leads to a larger population growth rate when the environment is unchanging. However, researchers had assumed that generation time was random and independent from mother to daughter cell.

But we now know that's not the case. In 2014 and 2015, Amir and his team demonstrated that cell volume and interdivision time is correlated across generations, and quantified these correlations. If a mother cell grows for a longer duration than average, for example, then a daughter cell would have to grow for a time shorter than average to compensate.

"No matter how small these correlations are, they profoundly change the result of how variability changes population growth," said Lin.

Lin and Amir found that variability in the single-cell biomass growth rate — not generation time — impacts population size. As a result, low cellular growth rate variability leads to an increase in population growth.

"Evolutionarily, if you want to optimize your population growth rate, you want to minimize your cell growth rate variability," Amir said. "We found that generation time fluctuations don't matter. You can have divisions that vary wildly. As long as your biomass always increases at the same rate, your population will continue to grow at the same rate. Similarly, the details of the mechanism controlling cell size doesn't matter – as long as it exists – which is the difference between our analysis and previous work."

This can be seen experimentally as well. The researchers observed that growth rate fluctuations in E. coli are smaller than fluctuations in generation time — in some cases 6 percent growth rate variability compared to 20 to 30 percent variability in generation time — and that the population growth rate was consistent with the theoretical predictions.

"This shows that cells size control has to be taken into account in population growth and these subtle correlations that a priori might appear to be innocuous are actually really important," said Amir.

###

Media Contact

Leah Burrows
[email protected]
617-496-1351
@hseas

http://www.seas.harvard.edu/

Related Journal Article

http://dx.doi.org/10.1016/j.cels.2017.08.015

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.