• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research in mice identifies neurons that control locomotion

Bioengineer by Bioengineer
January 20, 2022
in Biology
Reading Time: 4 mins read
0
Spinocerebellar tract neurons in mice
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For more than a century, scientists have known that while the commands that initiate movement come from the brain, the neurons that control locomotion once movement is underway reside within the spinal cord. In a study published January 20 in the journal Cell, researchers report that, in mice, they have identified one particular type of neuron that is both necessary and sufficient for regulating this type of movement. These neurons are called ventral spinocerebellar tract neurons (VSCTs).

Spinocerebellar tract neurons in mice

Credit: Chalif et al./Cell

For more than a century, scientists have known that while the commands that initiate movement come from the brain, the neurons that control locomotion once movement is underway reside within the spinal cord. In a study published January 20 in the journal Cell, researchers report that, in mice, they have identified one particular type of neuron that is both necessary and sufficient for regulating this type of movement. These neurons are called ventral spinocerebellar tract neurons (VSCTs).

“We hope that our findings will open up new avenues toward understanding how complex behaviors like locomotion come about and give us new insight into the mechanisms and biological principles that control this essential behavior,” says the paper’s senior author George Mentis, associate professor of pathology and cell biology in the Department of Neurology at Columbia University. “It’s also possible that our findings will lead to new ideas for therapeutic avenues, whether they involve treatments for spinal cord injury or neurodegenerative diseases that affect movement and motor control.”

VSCTs were discovered in the 1940s, but researchers have long believed that their main function was to relay messages about neuronal activity from the spinal cord to the cerebellum. The new study reports that instead they control locomotor behavior both during development and in adulthood.

“These findings were a huge surprise,” Mentis says. “One of the key discoveries in our study was that apart from their connection to the cerebellum, these neurons make connections with other spinal neurons that are also involved in locomotor behavior via their axon collaterals.”

The research involved several novel experimental approaches. One part of the research used optogenetics, employing LED light to regulate certain proteins that were expressed selectively in VSCTs to either activate or suppress the neuronal activity. Another set of experiments used chemogenetics, a process by which a chemical compound is used to activate or suppress synthetic ligands expressed artificially in these neurons, controlling their activity.

Leveraging the ability of intact spinal cords from newborn mice to function in a dish, the researchers showed that activation of VSCTs by light induced locomotor behavior. When VSCT activity was suppressed by light or by drugs, ongoing locomotor behavior was halted. During adulthood, freely moving mice stopped moving when the activity of VSCT was suppressed by injecting an inhibitory drug. Locomotor behavior was also tested by the ability of mice to swim. Mice were unable to swim and simply floated in the water when VSCTs were silenced. In all of these models and experiments, the researchers demonstrated that VSCTs alone were both necessary and sufficient for controlling locomotor activity—activating them was enough to induce activity while suppressing them was enough to stop it.

Mentis acknowledges that there are limitations to conducting this type of research in mice, including the fact that while humans are bipedal, mice are quadrupedal; thus, their locomotion could be regulated in a different way. But he notes that other research on neurodegenerative diseases and processes in mice has led to clinical trials in human patients, suggesting that these findings are also likely to be applicable.

For their next steps, the team plans to identify and map precisely the neuronal circuits that VSCTs make with motor neurons and other spinal neurons. They also would like to identify select genetic markers and uncover potential subpopulations of VSCTs and explore their role in different modes of locomotion. Finally, they plan to explore how the function of VSCTs is altered in the context of pathology and neurodegenerative diseases.

###

This work was supported by NINDS, the NIH, the NIH Blueprint for Neuroscience Research, NIAAA, the SMA Foundation, and Project-ALS.

Cell, Chalif et al.: “Ventral spinocerebellar tract neurons drive mammalian locomotion” https://www.cell.com/cell/fulltext/S0092-8674(21)01452-5 

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact [email protected].



Journal

Cell

DOI

10.1016/j.cell.2021.12.014

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Control of mammalian locomotion by ventral spinocerebellar tract neurons

Article Publication Date

20-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025
Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025

Sodium Selenite Boosts Fermentation in Alfalfa Silage

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Three-Sensor Technology Promises to Transform Obesity Treatment

Novel CRISPR-Based Test Promises Tuberculosis Screening with Just a Mouth Swab

Study Reveals First Evidence of Plastic Nanoparticles Accumulating in Edible Parts of Vegetables

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.