• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research in brief: Science one step closer to “turning off” seizures, sleep disturbances linked to intellectual disability

Bioengineer by Bioengineer
February 22, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Science is one step closer to developing targeted drug therapies that may reduce seizures, sleep disorders, and related symptoms common in people with intellectual disabilities.

UNLV neuroscientist Rochelle Hines

Credit: Josh Hawkins/UNLV Photo Services

Science is one step closer to developing targeted drug therapies that may reduce seizures, sleep disorders, and related symptoms common in people with intellectual disabilities.

Research led by a team of UNLV neuroscientists has shown the potential to zero in on the root-level cause of a host of adverse symptoms associated with unique subtypes of neurodevelopmental disorders, work that could one day improve the lives of millions worldwide.

The study, published Feb. 15 in the Nature journal Molecular Psychiatry, builds on previous research by UNLV neuroscientist Rochelle Hines and collaborators, which discovered that two key proteins — collybistin and the GABAA receptor α2 subunit — control the firing of brain cells and contribute to epileptic seizures, learning and memory deficiencies, sleep disturbances, and other symptoms frequently associated with various forms of intellectual disability including Down syndrome, autism, and ADHD.

The team’s newest findings unveiled that mutations in ARHGEF9 — the gene that codes for collybistin — lead to intellectual disability through impaired α2 subunit function. The team further showed that α2 is a central hub for many of the adverse neurological symptoms characteristic of multiple intellectual disability subtypes.

“Seizures and sleep deficits are two of the most common and most disruptive symptoms in children with neurodevelopmental disorders, and sleep deficits in particular are not well treated and can impact the entire family,” said Hines, who partnered with UNLV faculty and undergraduate and graduate student researchers, as well as scientists from Tufts University and Boston Children’s Hospital. “This research gives new hope to patients that we can now develop drug therapies and provide more precise interventions.”

In addition to patients with neurodevelopmental disorders, researchers said their study has the potential to improve the quality of life more broadly for people who grapple with sleep dysfunction, epilepsy, anxiety, hyperactivity, and other neurological abnormalities. 

Takeaways

  • Intellectual disability is a common neurodevelopmental disorder that can arise from genetic mutations. People with these disorders — Down syndrome and autism are the most prevalent — frequently report related symptoms such as epileptic seizures, learning and memory difficulties, and disrupted sleep-wake cycles.
     
  • By manipulating interaction between two key brain proteins, scientists discovered that one of them — called the α2 subunit — plays a more critical role in intellectual disability and related symptoms than researchers previously thought.
     
  • Knowing which functional interaction is responsible for triggering adverse effects caused by ARHGEF9 gene mutations will help researchers develop precise drug interventions — providing enhanced care to patients.
     
  • Further research is underway, with hope that the work may one day advance to clinical trials. 

Publication Details

Nature’s Molecular Psychiatry published Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABAA receptor α2 subunit online on Feb. 15. 

The National Institutes of Health supported the research with funding. Additional researchers include UNLV neuroscientist Dustin Hines; UNLV student researchers April Contreras, Betsua Garcia, Jeffrey S. Barker, and Austin J. Boren; Boston Children’s Hospital neurologist Christelle Moufawad El Achkar; and Tufts University School of Medicine neuroscientist Stephen J. Moss.



Journal

Nature

DOI

10.1038/s41380-022-01468-z

Article Title

Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABAA receptor α2 subunit

Article Publication Date

15-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Dihydromyricetin Shields Against Spinal Cord Injury Damage

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025
Key Genes Identified in Nutrient Stress During Virus Infection

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dihydromyricetin Shields Against Spinal Cord Injury Damage

University of Tennessee Partners on NSF Grants to Enhance Outcomes via AI

Innovative Ultrasound Method at HonorHealth Research Institute Activates Drugs to Target Pancreatic Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.