• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Research in and high above the Amazon rainforest

Bioengineer by Bioengineer
December 5, 2022
in Chemistry
Reading Time: 4 mins read
0
Successful first CAFE Brazil measurement flight
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As part of the CAFE-Brazil expedition, about 70 scientists will travel to Manaus in December and January. The airport of the capital of the Brazilian state of Amazonas is the take-off and landing point for the 20 planned measurement flights with the research aircraft HALO (High Altitude and Long Range Research Aircraft). HALO, operated by the German Aerospace Center (DLR), is suitable for high altitudes and long ranges and is used for scientific research into the Earth’s atmosphere. For the CAFE-Brazil mission, the research team has equipped HALO with 19 instruments that will measure dozens of parameters, including aerosols, volatile organic compounds (VOCs), sulfur and nitrogen oxides, carbon monoxide, methane, ozone, free radicals, and water.

Successful first CAFE Brazil measurement flight

Credit: MPIC/Dominic Jack with planet.atmosphere.aero/

As part of the CAFE-Brazil expedition, about 70 scientists will travel to Manaus in December and January. The airport of the capital of the Brazilian state of Amazonas is the take-off and landing point for the 20 planned measurement flights with the research aircraft HALO (High Altitude and Long Range Research Aircraft). HALO, operated by the German Aerospace Center (DLR), is suitable for high altitudes and long ranges and is used for scientific research into the Earth’s atmosphere. For the CAFE-Brazil mission, the research team has equipped HALO with 19 instruments that will measure dozens of parameters, including aerosols, volatile organic compounds (VOCs), sulfur and nitrogen oxides, carbon monoxide, methane, ozone, free radicals, and water.

“We expect to gain new insights into the chemical processes in the atmosphere above the tropical rainforest and also into the interactions between the biosphere and the atmosphere, in order to better explain the fundamental role of the rainforest in the terrestrial system,” says Jos Lelieveld, scientific leader of the research expedition and director at the Max Planck Institute for Chemistry. Joachim Curtius, experimental atmospheric scientist and professor at Goethe University in Frankfurt, is also looking forward to the research flights with excitement: “We are glad to be part of this important project and that it can finally get underway. Our focus is on the formation of particles from trace gases emitted by the forest.” CAFE-Brazil was actually supposed to be launched in spring 2020, but had to be postponed due to the Coronavirus crisis.

The São Paulo University (USP) is a long-term partner with Max Planck, studying trace gases, aerosols and clouds over the Amazon, for the last 25 years. “Amazonia is critical for global climate change, and we need a better understanding of the links between forest emissions, atmospheric transport and the impact of climate change in the forest. The strategies to preserve the Amazon Forest needs to be based on Science to be effective, and experiments like this provides the framework to protect the rain forest,” says Paulo Artaxo from the Physics Institute at USP. “The CAFÉ-Brazil experiment will provide new insights on the links between high altitude and forest biology, connected via vertical convection and downdrafts, and it complements nicely the long-term measurements at the ATTO tower,” adds Luiz Augusto Machado from INPE and USP.

Measurement flights in the troposphere

The flights over the rainforest will follow set patterns to measure vertical and horizontal profiles. The plan also includes so-called helix flights, during which HALO will spiral from low altitudes up to an altitude of 15 kilometers. The researchers want to use the aircraft measurements to find out how atmospheric oxidation processes take place in the troposphere above the Amazon rainforest and how they influence the formation and growth of aerosol particles, which are of central importance as cloud condensation nuclei.

The scientists also want to find the answer to the question of why the atmosphere’s self-cleansing nature does not suffer over the rainforest, even though huge amounts of hydroxyl radicals are constantly being consumed. The chemical compound is considered a detergent for the atmosphere because it oxidizes pollutants such as methane and produces water-soluble reaction products that are washed out of the air with the rain.

Additional information from the ATTO research tower

Studies at the German-Brazilian research station ATTO (Amazon Tall Tower Observatory), a 325-meter-high steel tower in the middle of the northern Brazilian Amazon rainforest about 150 kilometers from Manaus, will complete the measurements with HALO. In addition to climate observations at different heights in the atmosphere, ATTO will enable research into the rainforest biosphere. Since a similar set of instruments is deployed on the tower as on HALO, this offers a unique opportunity to link measurements in and directly above the rain forest.

The researchers want to compare the data sets obtained in the largely clean air above the Amazon rainforest with results obtained in part from earlier measurement campaigns under marine and polluted conditions, which also focused on air pollution.

Cooperation partner CAFE-Brazil:

Cooperating institutions include the Max Planck Institute for Chemistry (Germany), Goethe University Frankfurt (Germany), the Universidade de São Paulo (Brazil), and the Instituto Nacional de Pesquisas da Amazônia (Brazil).

Background information on the campaign:

The Amazon rainforest is of global ecological importance – it produces large quantities of oxygen, stabilizes the global climate and influences the water and carbon cycles. It produces large quantities of VOCs such as isoprene. These in turn form aerosol particles, which are important for the formation of clouds and precipitation.

The VOCs undergo chemical changes in the air. This involves so-called hydroxyl radicals. This chemical compound oxidizes pollutants such as methane and makes them water-soluble. They are virtually washed out of the air with the precipitation.

 

Joint press release of the Max Planck Institute for Chemistry, Goethe University Frankfurt, Universidade de São Paulo, and the Instituto Nacional de Pesquisas da Amazônia



Method of Research

Experimental study

Subject of Research

Not applicable

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Latest Trends in Opioid Prescribing Practices for Cancer Patients Revealed

Unlocking the Mysteries of Snapdragon: Insights into Cutting-Edge Technology

Efficient Deep-Blue CsPbBr3 LEDs Meet Rec.2020

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.