• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research demonstrates how immunotherapy may be effective for fighting TB

Bioengineer by Bioengineer
March 14, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Matt Cashore/University of Notre Dame.

In part because of its resistance to many antibiotics, tuberculosis kills approximately 1.7 million people worldwide each year. But new research from the University of Notre Dame suggests that structures released by the infected cells may be used in tandem with antibiotics to boost the body’s immune system, helping fight off the disease.

The paper, published in EMBO Reports by Jeffrey Schorey, the George B. Craig Jr. Professor, and Yong Cheng, research assistant professor, both in the Department of Biological Sciences, describes how the structures, called extracellular vesicles (EVs), contain Mycobacterium tuberculosis RNA and transfer it to other cells. This starts a built-in weapon system against the disease in the form of an immune response.

Though extracellular vesicles containing RNA from viruses had been discovered years ago, Schorey and his collaborators recently discovered RNA from bacteria — Mycobacterium tuberculosis — in EVs. This discovery led to experiments described in the EMBO Reports paper to determine how the bacteria’s RNA was affecting the “target” cell, including cells infected by M. tuberculosis.

A key research discovery hinges on macrophages, which are cells of the immune system. These cells, when treated with EVs released from M. tuberculosis-infected cells, can control the infection better than macrophages not previously exposed to the EVs, Schorey and Cheng determined. “It had never before been shown that bacterial RNA in EVs can activate this sensing pathway, one that has primarily been thought to be involved in viral sensing,” Schorey said. The authors then show that EV-treated macrophages produce compounds like reactive oxygen species that can promote the killing of the M. tuberculosis once it infects the macrophage.

The discovery is important because it can lead to future therapies for treatment of tuberculosis. Preliminary data in the paper suggest that antibiotics might work better when combined with an immunotherapy based on using these EVs. The data from the mouse model showed that more of the bacterial-infected cells were killed with the combination of therapies than either antibiotics or EVs alone, Schorey noted.

The next steps for future research are to try this approach with other laboratory models, with the goal that they also show the benefit of combining EVs, as immunotherapy treatments, with antibiotics to treat drug-resistant tuberculosis.

Worldwide, more than 10 million people develop active tuberculosis each year. Furthermore, over two billion people are infected with the bacteria. This results in a reservoir of infected people who may develop disease if their immune systems are compromised.

###

Schorey is affiliated with Advanced Diagnostics and Therapeutics, the Eck Institute for Global Health and the Center for Rare and Neglected Diseases at Notre Dame. The research was funded by the National Institute of Allergy and Infectious Diseases.

Media Contact
Jessica Sieff
[email protected]

Original Source

https://news.nd.edu/news/research-demonstrates-how-immunotherapy-may-be-effective-for-fighting-tb/

Tags: Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

Estimating Rice Canopy LAI Non-Destructively Across Varieties

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.