• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Research could give insight into genetic basis of of the human muscle disease, myopathy

Bioengineer by Bioengineer
July 5, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pioneering research using the tropical zebrafish could provide new insights into the genetic basis of myopathy, a type of human muscle disease.

An international research team, led by Professor Philip Ingham FRS, inaugural Director of the University of Exeter's Living Systems Institute — has taken the first steps in determining the central role a specific gene mutation in a poorly characterised human myopathy.

Myopathies are diseases that prevent muscle fibres from functioning properly, causing muscular weakness. At present, there is no single treatment for the disease, as it can develop via a number of different pathways.

One particular type is nemaline myopathy, which primarily affects skeletal muscles and can lead to sufferers experiencing severe feeding and swallowing difficulties as well as limited locomotor activity.

Mutations in a specific gene, called MY018B, have recently been found to be present in people exhibiting symptoms of this disease, but the role these mutations play in muscle fibre integrity has until now been unclear.

In this new research, the Ingham team, based in Singapore and Exeter, has used high-resolution genetic analysis to create a zebrafish model of MYO18B malfunction; this research takes advantage of the remarkable similarity between the genomes of zebrafish and humans, — which have more than 70 per cent of their genes in common.

The Singapore/Exeter team found that the MYO18B gene is active specifically in the 'fast-twitch' skeletal muscles of the zebrafish, typically used for powerful bursts of movement. Crucially, by studying fish in which the MYO18B gene is disrupted, they were able to show that it plays an essential role in the assembly of the bundles of actin and myosin filaments that give muscle fibres their contractile properties.

The team believe this new research offers a vital new step towards understanding the cause of myopathy in humans, which in turn could give rise to new, tailored treatments in the future.

The leading research is published in the scientific journal, Genetics.

Professor Ingham, said: "The identification of a MYO18B mutation in zebrafish provides the first direct evidence for its role in human myopathy and gives us a model in which to study the molecular basis of MYO18B function in muscle fibre integrity."

A pioneer in the genetic analysis of development using fruit flies and zebrafish as model systems, Prof Ingham is internationally renowned for his contributions to several influential discoveries in the field of developmental biology over the last century.

This is the latest research by Professor Ingham that has revealed important links between the processes that underpin normal embryonic development and disease.

His co-discovery of the 'Sonic Hedgehog' gene, recognised as one of 24 centennial milestones in the field of developmental biology by Nature, in 2004, led directly to the establishment of a biotechnology company that helped develop the first drug to target non-melanoma skin cancer.

The research comes at the University of Exeter holds the official opening of the Living Systems Institute with an Opening Symposium event, from July 5-6 2017.

Two Nobel Laureates, Sir Paul Nurse FRS and Christiane Nüsslein-Volhard ForMemRS, who separately won the Nobel Prize for Physiology or Medicine, will deliver keynote speeches as part of the opening event.

The high-profile event, held at the University's Streatham Campus marks the official opening of the LSI — a £52 million inter-disciplinary research facility designed to bring new, crucial insights into the causes and preventions of some of the most serious diseases facing humanity.

A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B is published in Genetics.

###

Media Contact

Duncan Sandes
[email protected]
44-013-927-22391
@uniofexeter

http://www.exeter.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Prescribed Opioid Painkillers During Pregnancy Unlikely to Raise Autism or ADHD Risk, Study Finds

September 16, 2025

IU Researchers Find No Link Between Prenatal Opioid Pain Medication and Increased Autism or ADHD Risk

September 16, 2025

AI-Enhanced CRISPR Promises Accelerated Gene Therapy Development, Stanford Medicine Study Reveals

September 16, 2025

$1.7M Department of Defense Grant Launches Virtual Cancer Center to Advance Military Health Research

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Approach Enhances Precision of Machine-Learned Potentials for Catalysis Simulation

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

New Study Reveals the Science Behind Exercise and Weight Loss

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.