• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research Brief: Study uncovers hundred-year lifespans for three freshwater fish species in the Arizona desert

Bioengineer by Bioengineer
October 30, 2023
in Biology
Reading Time: 6 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent study found some of the oldest animals in the world living in a place you wouldn’t expect: fishes in the Arizona desert. Researchers found the second genus of animal ever for which three or more species have known lifespans greater than 100 years, which could open the doors to aging studies across disciplines, such as gerontology and senescence (aging) among vertebrates. 

The study centers around a series of fish species within the Ictiobus genus, known as buffalofishes. Minnesota has native populations of each of the three species studied: bigmouth buffalo, smallmouth buffalo and black buffalo. The importance of this research is underscored by the fact that these fishes are often misidentified and lumped in with invasive species, like carp, and the fishing regulations in many places, including Minnesota, do not properly protect these species, and what could become a wealth of information about longevity and aging.

This new research from the University of Minnesota Duluth (UMD), recently published in Scientific Reports, was a collaboration between Alec Lackmann, PhD, an ichthyologist and assistant professor in the Department of Mathematics and Statistics of the Swenson College of Science and Engineering at UMD; other scientists including from North Dakota State University; and a group of conservation anglers who fish the Apache Lake reservoir in Arizona.

“There is likely a treasure trove of aging, longevity and negligible senescence information within the genus Ictiobus,” said Lackmann. “This study brings light to this potential and opens the door to a future in which a more complete understanding of the process of vertebrate aging can be realized, including for humans. The research begs the question: what is the buffalofishes’ fountain of youth?” 

Lackmann has studied buffalofishes before, and his research from 2019 went so far as to extend the previously thought maximum age of bigmouth buffalo from around 25 years of age, to more than 100 years of age by applying and validating a far more refined aging technique than had been used previously. Instead of examining the fish’s scale, “you extract what are called the otoliths, or earstones, from inside the cranium of the fish, and then thin section the stones to determine their age,” said Lackmann.

Approximately 97 percent of fish species have otoliths. They’re tiny stone-like structures that grow throughout the fish’s lifetime, forming a new layer each year. When processed properly, scientists like Lackmann can examine the otolith with a compound microscope and count the layers, like the rings on a tree, and learn the age of the fish. 

Results of the study include:

A century-old buffalofish from Apache Lake, Arizona.

Credit: University of Minnesota Duluth

A recent study found some of the oldest animals in the world living in a place you wouldn’t expect: fishes in the Arizona desert. Researchers found the second genus of animal ever for which three or more species have known lifespans greater than 100 years, which could open the doors to aging studies across disciplines, such as gerontology and senescence (aging) among vertebrates. 

The study centers around a series of fish species within the Ictiobus genus, known as buffalofishes. Minnesota has native populations of each of the three species studied: bigmouth buffalo, smallmouth buffalo and black buffalo. The importance of this research is underscored by the fact that these fishes are often misidentified and lumped in with invasive species, like carp, and the fishing regulations in many places, including Minnesota, do not properly protect these species, and what could become a wealth of information about longevity and aging.

This new research from the University of Minnesota Duluth (UMD), recently published in Scientific Reports, was a collaboration between Alec Lackmann, PhD, an ichthyologist and assistant professor in the Department of Mathematics and Statistics of the Swenson College of Science and Engineering at UMD; other scientists including from North Dakota State University; and a group of conservation anglers who fish the Apache Lake reservoir in Arizona.

“There is likely a treasure trove of aging, longevity and negligible senescence information within the genus Ictiobus,” said Lackmann. “This study brings light to this potential and opens the door to a future in which a more complete understanding of the process of vertebrate aging can be realized, including for humans. The research begs the question: what is the buffalofishes’ fountain of youth?” 

Lackmann has studied buffalofishes before, and his research from 2019 went so far as to extend the previously thought maximum age of bigmouth buffalo from around 25 years of age, to more than 100 years of age by applying and validating a far more refined aging technique than had been used previously. Instead of examining the fish’s scale, “you extract what are called the otoliths, or earstones, from inside the cranium of the fish, and then thin section the stones to determine their age,” said Lackmann.

Approximately 97 percent of fish species have otoliths. They’re tiny stone-like structures that grow throughout the fish’s lifetime, forming a new layer each year. When processed properly, scientists like Lackmann can examine the otolith with a compound microscope and count the layers, like the rings on a tree, and learn the age of the fish. 

Results of the study include:

  • Unparalleled longevity for freshwater fishes. Namely, three species with lifespans more than a century, with greater than 90 percent of the buffalofishes in Apache Lake more than 85 years old.
  • The discovery that some of the original buffalofishes from the Arizona stocking in 1918 are likely still alive.
  • A fishery of catch-and-release buffalofish angling that has not only increased our knowledge of fisheries, but also our understanding of how buffalofishes can be identified and recaptured across years, including uniquely-marked centenarians. 
  • A robust citizens and scientists collaborative effort that has resulted in thorough and consistent scientific outreach and learning.

Buffalofishes are native to central North America, including Minnesota, but those in this recent study were found in Apache Lake, a reservoir in the desert southwest. Originally reared in hatcheries and rearing ponds along the Mississippi River in the Midwest, the government stocked buffalofishes into Roosevelt Lake (upstream of Apache Lake), Arizona in 1918. While Roosevelt Lake was fished commercially, Apache Lake’s fish populations remained largely untouched until anglers recently learned how to consistently catch buffalofishes there on rod-and-line.

When these catch-and-release conservation anglers noticed unique orange and black spots on many of the fish they were catching, they wanted to learn more about the markings, and found Lackmann’s previous research. An Arizona angler, Stuart Black, reached out and invited Lackmann to a fishing expedition at Apache Lake, where the fish collected would be donated to science.

By studying the fishes collected at the angling event and analyzing their otoliths for age, Lackmann found that some of the buffalofishes from the 1918 Arizona stocking are likely still alive today, and that most of the buffalofishes in Apache Lake hatched during the early 1920s. More importantly, they discovered that the three different buffalofish species found in the lake had ages more than 100 years. To their knowledge, such longevity across multiple freshwater fish species is found nowhere else in the world.  

For Lackmann, there are exciting possibilities for the future of studying this unique group of fish, with far-reaching implications.

“These long-lived species of fishes and individuals could be monitored so that we can further study and understand their DNA, their physiology, their ability to fight infection and disease, and to compare these systems across the continuum of age,” said Lackmann. “The genus Ictiobus has potential to prove of high value to the field of gerontology, and Apache Lake could become an epicenter for a variety of scientific research in the future.”

About UMD
One of five campuses that comprise the University of Minnesota System, the University of Minnesota Duluth integrates liberal education, research, creative activity, and public engagement and prepares students to thrive as lifelong learners and globally engaged citizens. With an enrollment of nearly 10,000 undergraduate and graduate students, the Duluth campus offers 87 undergraduate and post-baccalaureate degrees, and graduate programs in more than 24 different fields. See UMD’s Land Acknowledgement statement. Visit d.umn.edu.



Journal

Scientific Reports

DOI

10.1038/s41598-023-44328-8

Article Title

Centenarian lifespans of three freshwater fish species in Arizona reveal the exceptional longevity of the buffalofishes (Ictiobus)

Article Publication Date

20-Oct-2023

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Moderate Warming on Soil Microbial Decomposition

Impact of Moderate Warming on Soil Microbial Decomposition

August 23, 2025
blank

Chalicothere Subfamily: Unique Phalangeal Fusion Uncovered

August 23, 2025

Green Synthesis of Silver Nanoparticles Using Cajanus cajan Pods

August 23, 2025

Do Exophytic Microbes Impact Pollen Growth in Camellia?

August 23, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Moderate Warming on Soil Microbial Decomposition

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.