• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Repairing the photosynthetic enzyme Rubisco

Bioengineer by Bioengineer
October 20, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

IMAGE

Credit: Manajit Hayer-Hartl /MPI of Biochemistry

Manajit Hayer-Hartl, head of the research group “Chaperonin-assisted Protein Folding”, has a long-standing interest in the central enzyme of photosynthesis called Rubisco. Her team has already reported on many of the interacting partners of Rubisco that are required for the folding and assembly of this highly abundant protein. In the current study, they have elucidated how Rubisco activase works. As the name indicates, this enzyme is critical for repairing Rubisco once it has lost its activity. The study was published in Cell.

The enzyme Rubisco catalyzes the assimilation of CO2 from the atmosphere into organic matter. This is the central step in photosynthesis that generates sugar molecules for the production of essentially all biomass. Despite its pivotal role, Rubisco works relatively slowly and is easily inhibited by sugar products. By improving the function of Rubisco Hayer-Hartl hopes to be able to boost the process of photosynthesis. The goal is to address the growing global demand for food and reduce the current greenhouse gas-induced climate change.

The enzyme Rubisco activase, Rca, is present in plants, algae and certain cyanobacteria. Rca is a ring-shaped complex of six subunits with a central pore. How exactly Rca interacts with the inhibited Rubisco and releases the bound sugar from the active site pocket of Rubisco, restoring its CO2 fixing activity, was unclear until now. With the help of biochemistry, crystallography and cryo-electron microscopy, Hayer-Hartl & colleagues have now succeeded in deciphering the molecular mechanism of a cyanobacterial Rca.

They discovered that the Rca grabs the N-terminal tail of Rubisco and by pulling and pushing actions, using the energy of ATP, opens the active site pocket. This results in the release of the inhibitory sugar molecule. In cyanobacteria Rubisco is packaged into specialized micro-compartments called carboxysomes, in which a high concentration of CO2 is generated to facilitate the function of Rubisco.

In an earlier study, Hayer-Hartl showed how Rubisco is recruited into carboxysomes via interactions with the SSUL domains of the scaffolding protein CcmM. Interestingly, the researchers now found that Rca is recruited into carboxysomes using a very similar trick. The Rca hexamer also contains SSUL domains that dock onto Rubisco during carboxysome formation. This makes sure that enough Rca is present inside carboxysomes to perform its essential repair function. Thus, Rca not only functions in Rubisco activation but also mediates its own recruitment into carboxysomes.

Manajit Hayer-Hartl concludes: “Rca is absolutely required for Rubisco to function optimally. Deciphering its mechanism and dual function in cyanobacteria will further help us to make photosynthesis more effective in the future. Hopefully, this will get us closer to our ultimate goal, to increase agricultural productivity”.

###

Original publication:

M. Flecken, H. Wang, L. Popilka, F.U. Hartl, A. Bracher and M. Hayer-Hartl:

“Dual Functions of a Rubisco Activase in Metabolic Repair and Recruitment to Carboxysomes”

Cell, September 2020

Media Contact
Dr. Christiane Menzfeld
[email protected]

Original Source

https://www.biochem.mpg.de/repairing-the-photosynthetic-enzyme-rubisco

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2020.09.010

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Nuclei Isolation Unveils Litopenaeus vannamei Cell Atlas

December 28, 2025
blank

Unlocking Rice Quality: GWAS Sheds Light on Traits

December 28, 2025

Chloroplast Genome of Ecklonia maxima: A Comparative Study

December 27, 2025

Tissue-Specific Gene Expression Variance in Mice

December 27, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fuzzy Decision Support: Guiding Students’ Career Paths

Nurses Navigate Ethical Dilemmas in Home Care

COVID-19 Vaccine Hesitancy in Older Chinese Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.