• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Removing carbon dioxide from an air stream

Bioengineer by Bioengineer
May 23, 2019
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UD engineers develop a fuel cell system that helps environment

IMAGE

Credit: Photo by Evan Krape

Someday, we all might drive zero-emission cars. To get there, engineers are working to develop renewable energy solutions, such as fuel cells, that are clean and cost-effective. A team of engineers at the University of Delaware is among the 40 awardees of the Advanced Research Projects Agency-Energy (ARPA-E) OPEN2018, and has been awarded $1,979,998 in funding to build a fuel cell system fabricated with inexpensive catalysts and structural materials, which is consequently cheaper and more practical than existing fuel cell systems.

The team includes Shimshon Gottesfeld, an adjunct professor of Chemical and Biomolecular Engineering with three decades of experience leading fuel cell technology projects, Yushan Yan, Distinguished Engineering Professor of Chemical and Biomolecular Engineering, and Brian P. Setzler, a postdoctoral associate in Chemical and Biomolecular Engineering.

“This is becoming a leading center for fuel cell technology and electrochemistry,” said Gottesfeld.

Fuel cells, which convert fuel chemical energy directly into electricity, are promising renewable energy technologies, especially for transportation applications where they secure long range per tank full of fuel and short refueling time. However, fuel cells often use pricy platinum catalysts and expensive hardware materials. UD engineers have developed a fuel cell technology that uses cheaper catalysts and structural components, but these, so called hydroxide exchange membrane fuel cells have a limitation. They cannot use direct supply of ambient air, because the carbon dioxide in the air reduces their performance.

An efficient and cost-effective way to generate a CO2-free air stream, would open the door for wide introduction of this desirable fuel cell technology. To address this challenge, the UD team is developing a simple and cost effective cell serving as “electrochemical pump,” capable of removing carbon dioxide from a stream of ambient air.

“This carbon dioxide problem has been with us for long enough, and we decided to turn the problem on its head and make it into a solution,” said Yan.

The team is taking advantage of the carbon dioxide poisoning mechanism in a hydroxide exchange membrane cell, using a similar cell as an “electrochemical pump” of CO2 which is introduced upstream of the fuel cell stack. The electrochemical pump removes very efficiently carbon dioxide from the stream of ambient air needed by the fuel cell stack. In the electrochemical pump, air CO2 is current-driven (“pumped”) across the cell membrane and released back to air on the other side of the cell.

“Once we free ourselves from the traditional hydrogen/air cell architecture, an optimized electrochemical pump can be very compact and effective,” said Setzler.

The team is scheduled to demonstrate by the end of the project a system comprising an electrochemical pump and an alkaline membrane fuel cell stack, approximating a prototype.

Beyond generation of a CO2-free air stream for use by a fuel cell stack, electrochemical pumping of CO2 could be useful in a number of other systems targeting CO2 removal and capture.

###

Media Contact
Peter Kerwin
[email protected]

Original Source

https://www.udel.edu/udaily/2019/may/arpa-e-project-shimshon-gottesfeld-yushan-yan/

Tags: Biomedical/Environmental/Chemical EngineeringEnergy/Fuel (non-petroleum)Technology/Engineering/Computer ScienceVehicles
Share15Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.