• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Removal of excess chloride ions by plants when subjected to salt stress

by
June 24, 2024
in Chemistry
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

National University of Singapore (NUS) researchers have discovered a salt adaptation mechanism in plants that facilitates chloride removal from the roots and enhancing salinity tolerance.

Figure 1

Credit: National University of Singapore

National University of Singapore (NUS) researchers have discovered a salt adaptation mechanism in plants that facilitates chloride removal from the roots and enhancing salinity tolerance.

Soil salinity is one of the most deleterious environmental stress factors and increased salinity poses a growing challenge for crop production and adversely affects crop yields worldwide. The excess accumulation of soluble salts, especially sodium chloride (NaCl), in the root zone severely impedes plant growth, reducing crop productivity. Although chloride ions (Cl–) are essential nutrients for plants at low concentrations, their excessive accumulation is toxic to the plant cells.

Plants have evolved various strategies to cope with such environmental stresses by employing various channels and transporters for maintaining ion balance (ion homeostasis) in their cells. While there is a better understanding of the sodium ion homeostasis under salt stress, removal of chloride ions is not well understood.

To address this, a research team led by Professor Prakash KUMAR from the NUS Department of Biological Sciences has uncovered a novel mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of a specific chloride channel protein, AtCLCf. Their work revealed that the AtCLCf protein is made and stored in the endomembrane system (the Golgi apparatus) under normal growth conditions. When the root cells are treated with salt, AtCLCf translocates to the plasma membrane, where it helps to remove the excess chloride ions. This represents a novel mechanism to increase the plant’s salinity tolerance. The research is a collaboration with Dr Jiří FRIML from the Institute of Science and Technology, Austria and Professor XU Jian from Radboud University, The Netherlands.

This work was recently published in Nature Communications on 10 May 2024.

The study also identified a transcription factor, AtWRKY9, that directly regulates the expression of the AtCLCf gene when the plant is under salt stress. NaCl causes the AtCLCf protein to move from inside the cell (the Golgi) to the cell surface with the help of another protein called AtRABA1b/BEX5. If this movement is blocked by an inhibitor (brefeldin-A) or by modifying the BEX5 gene, it results in high salt sensitivity in plants.

Transgenic plants designed to produce additional AtCLCf gene showed increased salt tolerance in mutant forms of Arabidopsis plants lacking the CLCf gene. Collectively, these findings proved that AtCLCf is involved in the removal of excess chloride ions from root tissues to increase the salt tolerance of plants.

To understand how AtCLCf functions in plant cells, the researchers used several techniques such as fluorimetric measurement of liposomes incorporated with recombinant AtCLCf protein and chloride ion sensitive dye, as well as electrophysiological studies (patch clamp). These studies showed that AtCLCf works like a pump that swaps chloride ions with hydrogen ions, helping to remove excess chloride ions from the cells.

Prof Kumar said, “This represents an essential and previously unknown salt tolerance mechanism in Arabidopsis plants. This knowledge could be used to improve the salinity tolerance of crop plants in the future.”



Journal

Nature Communications

DOI

10.1038/s41467-024-48234-z

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

The translocation of a chloride channel from the Golgi to the plasma membrane helps plants adapt to salt stress

Article Publication Date

10-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025
Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Teamwork and Competition on STEM Engagement

Transforming Postgraduate Nursing: Journal Club Insights

Unraveling Gene Expression Mechanisms in Glioblastoma

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.