• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Reliable molecular toggle switch developed

Bioengineer by Bioengineer
March 29, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Photo: KIT)

Nanotechnology constantly allows for new records in miniaturization. Reduction of the dimension of electronic components, however, has physical limits that will be reached soon. Novel materials and components are required. This is where molecular electronics comes in. Scientists of Karlsruhe Institute of Technology (KIT) have now succeeded in developing a molecular toggle switch that does not only remain in the position selected, but can also be flipped as often as desired. This is reported in Nature Communications.

"By replacing conventional silicon-based components, e.g. a switch, by individual molecules, future electronic circuits might be integrated on a space smaller by a factor of 100," Lukas Gerhard of KIT's Institute of Nanotechnology says.

The basic structure of the electromechanical switch consists of a few carbon atoms. Three sulfur atoms form the feet that are fixed to a smooth gold surface. The toggle lever ends in a nitrile group with a nitrogen atom. It is flipped when voltage is applied. The resulting electric field exerts a force on the charge of the nitrogen atom. In this way, contact to a second electrode (here, the gold tip of a scanning tunneling microscope) is established.

The complete switch measures not more than a nanometer. For comparison: The smallest structures used in semiconductor technology are 10 nm in dimension. "Molecular electronics, hence, would be big progress," Gerhard says.

It is not only the size of the switch that is remarkable, but the fact that it works reliably and foreseeably. This means that its operation always leads to a switching state. The contact is either open or closed. So far, implementation of this principle has often failed due to insufficient controllability of electric contacting of individual molecules. For the first time, KIT researchers have now succeeded in opening and closing such a contact between a molecule and a gold tip electrically and mechanically as often as desired, without plastic deformation being caused.

In the opinion of Gerhard, progress in synthetic chemistry has resulted in the possibility of making available a large variety of billions of molecular building blocks of identical atomic design. "Their interconnection, however, requires them to be touched without being damaged." Such a gentle method has now be found and Gerhard considers this to be the decisive novelty.

###

This publication is the result of close cooperation between experimental physicists and chemists of KIT's Institute of Nanotechnology and of the University of Basel and theoretical physicists of the University of Konstanz.

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT – The Research University in the Helmholtz Association

Media Contact

Monika Landgraf
[email protected]
49-721-608-47414
@KITKarlsruhe

http://www.kit.edu/index.php

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Electrode Material on Radish Germination

Impact of Electrode Material on Radish Germination

September 14, 2025
blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.