• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Regeneration and improves functionality after a heart attack

Bioengineer by Bioengineer
October 29, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
 
There are an estimated 785,000 new heart attack cases in the United States each year, with no established treatment for repairing the resulting damage to cardiac tissue. Lead researcher Karen Christman, a professor in the Department of Bioengineering at the UC San Diego Jacobs School of Engineering, said the gel forms a scaffold in damaged areas of the heart, encouraging new cell growth and repair. Because the gel is made from heart tissue taken from pigs, the damaged heart responds positively, creating a harmonious environment for rebuilding, rather than setting off a chain of adverse immune system defenses.
“While more people today are initially surviving heart attacks, many will eventually go into heart failure,” said Christman.  “Our data show that this hydrogel can increase cardiac muscle and reduce scar tissue in the region damaged by the heart attack, which prevents heart failure.  These results suggest this may be a novel minimally invasive therapy to prevent heart failure after a heart attack in humans.”
 
The hydrogel is made from cardiac connective tissue that is stripped of heart muscle cells through a cleansing process, freeze-dried and milled into powder form, and then liquefied into a fluid that can be easily injected into the heart. Once it hits body temperature, the liquid turns into a semi-solid, porous gel that encourages cells to repopulate areas of damaged cardiac tissue and to improve heart function, according to Christman. The material is also biocompatible; animals treated with the hydrogel suffered no adverse affects such as inflammation, lesions or arrhythmic heart beating, according to safety experiments conducted as part of the study. Further tests with human blood samples showed that the gel had no affect on the blood’s clotting ability, which underscores the biocompatibility of the treatment for use in humans.
 
San Diego-based startup, Ventrix, Inc., which Christman co-founded, has licensed the technology for development and commercialization. Christman also serves on the company’s board. “We are excited and encouraged by the results of the study leading to a novel regenerative medicine solution for cardiac repair. The technology offers the potential for a longer and better quality of life for millions of heart attack sufferers,” said Adam Kinsey, the CEO of Ventrix.
 
Story Source:
The above story is reprinted from materials provided by UC San Diego. The original article was written by Catherine Hockmuth, UC San Diego. IMAGE Credit: Karen Christman, UC San Diego Jacobs School of Engineering.

 

Tags: Bioengineering
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Reveals the Science Behind Exercise and Weight Loss

New Study Reveals the Science Behind Exercise and Weight Loss

September 16, 2025

Prescribed Opioid Painkillers During Pregnancy Unlikely to Raise Autism or ADHD Risk, Study Finds

September 16, 2025

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025

Revolutionary AI Accelerates Development of Lifesaving Therapies

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals the Science Behind Exercise and Weight Loss

Prescribed Opioid Painkillers During Pregnancy Unlikely to Raise Autism or ADHD Risk, Study Finds

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.