• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 21, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Reducing sulfur dioxide emissions alone cannot substantially decrease air pollution

Bioengineer by Bioengineer
April 13, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Qianqian Zhang

High loadings of fine particulate matter (PM2.5) during haze are mostly produced from the chemical reactions of the reactive gas precursors, including sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), and volatile organic compounds. In an ideal world, air pollution would be cured by wiping clean any one of these four PM2.5 precursors. However, in the real world, we have to go step by step, considering the technological conditions and the economic costs in the emission control strategies. Besides, these gases are subject to a certain thermodynamic equilibrium in the atmosphere. Theoretically, NH3 prefers to combine with SO2 (sulfuric acid) to form ammonium sulfate, which is stable in the atmosphere. Excessive NH3 will react with nitrogen dioxide (nitric acid) to form ammonium nitrate, which is unstable, and the formation of which is influenced by the relative abundance of NH3 and nitrogen dioxide. Consequently, a decrease in SO2 emissions leaves more NH3 to form ammonium nitrate, and it may also perturb the balance between NH3 and nitrogen dioxide.

Due to the delivery of the Air Pollution Control Action Plan, SO2 emissions have declined dramatically since 2013. It also offers us an opportunity to examine whether a reduction in SO2 will perturb the balance between NH3 and nitrogen dioxide in forming ammonium nitrate, and to decide how to make emission control strategies in the future.

Professor Xingying ZHANG from the National Satellite Meteorological Center and his coauthors have addressed this issue. They evaluated and compared the behavior of PM2.5 with respect to NOx and NH3 emission changes in high (2013) and low (2018) SO2 emission cases.

Prof. Zhang’s group has found that, from 2013 to 2018, due to the changes in precursor emissions, the simulated annual mean PM2.5 concentration decreased by nearly 20%, more than half of which was driven by reduced SO2 emissions. “To evaluate the influence of a reduction in SO2 emissions on the sensitivity of PM2.5 to NOx and NH3 emissions, we conducted model sensitivity studies by separately perturbing NOx and NH3 emissions by ?25%. Then, we calculated the relative reduction of PM2.5 concentration caused by a 1% decrease in NOx and NH3 emissions,” explains Professor Zhang.

According to the study of Prof. Zhang, it can be concluded that, due to the reduced emissions of SO2, and considering the high level of NH3 emissions in China, nitrogen dioxide emissions control is more effective in reducing the surface PM2.5 concentration in China. This paper has been published in Atmospheric and Oceanic Science Letters.

###

Media Contact
Ms. Zheng Lin
[email protected]

Original Source

http://159.226.119.58/aosl/EN/news/news38.shtml

Related Journal Article

http://dx.doi.org/10.1080/16742834.2020.1738009

Tags: Atmospheric ScienceChemistry/Physics/Materials SciencesEarth SciencePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    79 shares
    Share 32 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite LetA defines a structurally distinct transporter family as a headline for a science magazine post, using no more than 7 words

Rewrite Construction of complex and diverse DNA sequences using DNA three-way junctions as a headline for a science magazine post, using no more than 7 words

Rewrite Four camera-type eyes in the earliest vertebrates from the Cambrian Period as a headline for a science magazine post, using no more than 7 words

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.