• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Recording device for cell history

Bioengineer by Bioengineer
October 3, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Different "events" such as infections by viruses, as well as the exposure to environmental toxins or other forms of stress, change the activity of genes thereby leaving molecular traces inside the cell. These changes happen mainly at the level of messenger RNA (mRNA). These are molecules that encode genetic information when genes become activated and read, a process known as transcription. Researchers can accurately investigate the activity of a gene by measuring the mRNA molecules present in a cell. However, the traces of gene transcription disappear rapidly: mRNA is highly instable, and cells often degrade it after a short time.

Circular DNA as a recording system

ETH researcher Randall Platt and his colleagues in the Department of Biosystems Science and Engineering have now developed a molecular recording system that writes transcriptional events into DNA where they can be permanently stored and later accessed to by sequencing.

To create their "recording device", Platt's doctoral students Florian Schmidt and Mariia Cherepkova employed the CRISPR-Cas system. CRIPSR-Cas is an adaptive immune system in bacteria and archaea. The system functions like an immunological memory device by recording genetic information about pathogens infecting the cell. This genetic information is recorded in a specific stretch of DNA known as a CRISPR array – a process called acquisition.

Genetic information like a string of pearls

CRISPR arrays are capable of storing short sequences of DNA, known as 'spacers', originating from a pathogen. Spacers are separated from each other by short identical DNA sequence called direct repeats, just like pearls on a string.

The researchers worked with the gut bacterium Escherichia coli, introducing the genes for the CRISPR-Cas system from a different bacterial species. One of those Cas genes is fused to a reverse transcriptase, an enzyme that uses an RNA molecule to produce DNA encoding the same information – in other words, it transcribes RNA back into DNA.

The Escherichia coli cells supplied with the foreign genes for this CRISPR-Cas were able to produce a protein complex that binds short mRNA molecules. The reverse transcriptase translates these RNA spacers into DNA, containing the same information as the original RNA, and subsequently storing them in the CRISPR array. This process can occur multiple times such that new spacers are added to the CRISPR array in reverse chronological order, so the most recently acquired piece of DNA is always first.

In principle, this makes it possible to record any number spacers within a CRISPR array. Since DNA is very stable, the information recorded in them is stored for a long time and is also passed on from one generation of bacteria to the next.

"Our system is a biological data logger. It records the genetic response of bacteria to external influences and enables us to access that information even after many bacterial generations" says Florian Schmidt, the lead author of the study, which was recently published in the journal Nature.

ETH Professor Randall Platt says, "Researchers have been working on creating forms of synthetic cellular memory for a long time, but we are the first to develop one that can record information about the expression of each gene in a cell over time." The researchers have spent over two years working on this system.

Accessing the entire log book

Until now, researchers were limited to measuring mRNA at only a single snapshot in time. Taking these snapshots generally means destroying the cell, extracting its mRNA, and then quantifying them. In contrast, the new CRISPR-Cas RNA recording system records the history of cell, allowing researchers to effectively access the entire cellular log book rather than just a single point in time.

As part of their study, the ETH researchers recorded the reaction of E. coli bacteria equipped with the data logger to the herbicide paraquat. This substance provokes changes in mRNA transcription within the cells, and the scientists could read out this response from the CRISPR arrays even days after the herbicide exposure. Without the data logger, any molecular traces of the bacteria's contact with the herbicide would have long since been broken down and the information lost.

Biological data loggers like this, in addition to being interesting for research purposes, could also conceivable be used as a kind of sensor, to measure environmental toxins such as the herbicide, or in diagnostics. The present study intriguingly demonstrates the feasibility of such an approach, however practical applications are still a long way off. Randall Platt's research team in Basel is already working on transferring the system to other cell types and paving the way for its effective use as a diagnostic tools.

###

Media Contact

Randall Platt
[email protected]
41-613-873-350
@ETH_en

http://www.ethz.ch/index_EN

https://www.ethz.ch/en/news-and-events/eth-news/news/2018/10/crispr-array-als-datenlogger-in-zellen.html

Related Journal Article

http://dx.doi.org/10.1038/s41586-018-0569-1

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.