• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Record-high data transmission using a soliton crystal

Bioengineer by Bioengineer
May 25, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of researchers has developed an efficient way to create micro-combs and exploit them in highly performing and robust frequency multiplexed optical fibre networks

IMAGE

Credit: INRS

Varennes, May 25 2020 – Australian and Canadian researchers led by Prof David J. Moss at Swinburne University of Technology and honorary professor at the Institut National de la Recherche Scientifique (INRS) was able to achieve world record-high data transmission over 75 km of standard optical fibre using a powerful class of micro-comb called soliton crystals.

“This is one of the most efficient transmission systems implemented in a standard telecom network, given the record amount of information that can be encoded and propagated in an optical fibre with minimum loss of data,” says Professor Roberto Morandotti of the INRS, co-author of the study published on May 22 in Nature Communications and long-term collaborator of Prof Moss.

Telecommunication networks use many different frequencies, or colours, to transfer as much information as possible. Current networks need typically a separate laser for every colour, which is difficult and costly to set up properly. “Here, we decided to use a micro-comb to replace the multiple lasers. Like a hair comb, we can generate a set of frequencies which are equally distant, and the phase and amplitude of which can be easily and precisely controlled,” explains Morandotti. The ability to supply all wavelengths with a single, compact integrated chip, replacing many parallel lasers, offers the greatest benefit, in terms of performance, scalability and power consumption.

“We took advantage of the fact that a frequency comb could be created with a device known as a micro-ring resonator. Previous to this work, a well-behaved comb, resulting in a so-called cavity soliton, required a special and unique balance between colour dispersion and non-linearity. Such combs are typically difficult to generate and stabilize, and not really power efficient even under ideal conditions, so the researchers have developed a new way to achieve them for telecom purposes. In particular, if the microresonator is properly designed, it is possible to get a cross point between the optical modes supported by the device, which in turn creates the right condition for realizing a different type of micro-comb, leading to so-called crystal solitons, which is both robust and user-friendly,” explains Professor Morandotti.

This work demonstrates the capability of optical micro-combs to perform in demanding and practical optical communications networks. According to Professor Morandotti, the proposed mechanism could be commercially implemented in 5 years from now since similar micro-ring resonators, intended for less demanding applications such as filtering, are already well known and commercially available.

###

About the Study

The article “Ultra-dense optical data transmission over standard fibre with a single chip source”, by Bill Corcoran, Mengxi Tan, Xingyuan Xu, Andreas Boes, Jiayang Wu, Thach G. Nguyen,

Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell and David J. Moss, was published on May 22 in the journal Nature Communications. This research was supported by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), Ministère de l’Économie et de l’Innovation, the Canada Research Chair Program, the Australian Research Council, and the Government of the Russian Federation. DOI: 10.1038/s41467-020-16265-x

About the INRS

The Institut National de la Recherche Scientifique (INRS) is the only institution in Québec dedicated exclusively to graduate level university research and training. The impacts of its faculty and students are felt around the world. INRS proudly contributes to societal progress in partnership with industry and community stakeholders, both through its discoveries and by training new researchers and technicians to deliver scientific, social, and technological breakthroughs in the future.

Contact: Audrey-Maude Vézina, Communications, INRS, 418-254-2156, [email protected]

Media Contact
Audrey-Maude Vézina
[email protected]

Original Source

http://www.inrs.ca/english/actualites/record-high-data-transmission-using-soliton-crystal

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-16265-x

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsInternetNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    134 shares
    Share 54 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Post-Fire Growth Insights of Cyathea Mexiae in Brazil

Pollinators Use Sight and Smell for Flower Identification

Developing Diverse Hairy Root Collections: Methodology Unveiled

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.