• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Recipe for neuromorphic processing systems?

Bioengineer by Bioengineer
March 24, 2020
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A special blend of circuits and memristive devices was created for brain-mimicking processing systems

IMAGE

Credit: Elisabetta Chicca


WASHINGTON, March 24, 2020 — During the 1990s, Carver Mead and colleagues combined basic research in neuroscience with elegant analog circuit design in electronic engineering. This pioneering work on neuromorphic electronic circuits inspired researchers in Germany and Switzerland to explore the possibility of reproducing the physics of real neural circuits by using the physics of silicon.

The field of “brain-mimicking” neuromorphic electronics shows great potential not only for basic research but also for commercial exploitation of always-on edge computing and “internet of things” applications.

In Applied Physics Letters, from AIP Publishing, Elisabetta Chicca, from Bielefeld University, and Giacomo Indiveri, from the University of Zurich and ETH Zurich, present their work to understand how neural processing systems in biology carry out computation, as well as a recipe to reproduce these computing principles in mixed signal analog/digital electronics and novel materials.

One of the most distinctive computational features of neural networks is learning, so Chicca and Indiveri are particularly interested in reproducing the adaptive and plastic properties of real synapses. They used both standard complementary metal-oxide semiconductor (CMOS) electronic circuits and advanced nanoscale memory technologies, such as memristive devices¬, to build intelligent systems that can learn.

This work is significant, because it can lead to a better understanding of how to implement sophisticated signal processing using extremely low-power and compact devices.

Their key findings are that the apparent disadvantages of these low-power computing technologies, mainly related to low precision, high sensitivity to noise and high variability, can actually be exploited to perform robust and efficient computation, very much like the brain can use highly variable and noisy neurons to implement robust behavior.

The researchers said it is surprising to see the field of memory technologies, typically concerned with bit-precise high-density device technologies, now looking at animal brains as a source of inspiration for understanding how to build adaptive and robust neural processing systems. It is very much in line with the basic research agenda that Mead and colleagues were following more than 30 years ago.

“The electronic neural processing systems that we build are not intended to compete with the powerful and accurate artificial intelligence systems that run on power-hungry large computer clusters for natural language processing or high-resolution image recognition and classification,” said Chicca.

In contrast, their systems “offer promising solutions for those applications that require compact and very low-power (submilliwatt) real-time processing with short latencies,” Indiveri said.

He said examples of such applications fall within “the ‘extreme-edge computing’ domain, which require a small amount of artificial intelligence to extract information from live or streaming sensory signals, such as for bio-signal processing in wearable devices, brain-machine interfaces and always-on environmental monitoring.”

###

The article, “A recipe for creating ideal hybrid memristive-CMOS neuromorphic computing systems,” is authored by Elisabetta Chicca and Giacomo Indiveri. It will appear in Applied Physics Letters, March 24, 2020 (DOI: 10.1063/1.5142089). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5142089.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5142089

Tags: BiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsInternetneurobiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.