• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Recent progress of narrowband perovskite photodetectors: fundamental physics and strategies

Bioengineer by Bioengineer
April 25, 2024
in Chemistry
Reading Time: 4 mins read
0
Schematic summary of implementation strategies for narrowband perovskite PDs
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Photodetectors are devices that convert an input optical signal into an electrical signal that can be processed by an electronic circuit. Photodetectors are categorized into broadband and narrowband photodetectors based on the detection width of the absorption spectral window for a particular application. Widely used commercial narrowband photodetectors are primarily based on conventional semiconductor materials. However, most of such semiconductor materials need to be prepared by epitaxial growth, accompanied by stringent high temperature and high vacuum environments. The complexity of the fabrication process limits their large-scale application and their use in flexible devices. In recent years, there have been more technological advances in the synthesis of chalcogenide materials and the design of device structures, allowing chalcogenide photodetectors to have performance comparable to that of conventional photodetectors. In particular, with the design and introduction of various narrowband photo-detection strategies, such as charge collection narrowing effect, surface roughening effect, photoactive and electric shielding layer strategy, introduction of optical structure, charge separation inversion strategy, etc., chalcocite narrowband photodetectors have achieved excellent detection of half-peak full-widths in the range of 10-50 nm, which demonstrates a new pathway for the future of narrowband multispectral photo-detection and other novel applications.

Schematic summary of implementation strategies for narrowband perovskite PDs

Credit: Advanced Devices & Instrumentation

Photodetectors are devices that convert an input optical signal into an electrical signal that can be processed by an electronic circuit. Photodetectors are categorized into broadband and narrowband photodetectors based on the detection width of the absorption spectral window for a particular application. Widely used commercial narrowband photodetectors are primarily based on conventional semiconductor materials. However, most of such semiconductor materials need to be prepared by epitaxial growth, accompanied by stringent high temperature and high vacuum environments. The complexity of the fabrication process limits their large-scale application and their use in flexible devices. In recent years, there have been more technological advances in the synthesis of chalcogenide materials and the design of device structures, allowing chalcogenide photodetectors to have performance comparable to that of conventional photodetectors. In particular, with the design and introduction of various narrowband photo-detection strategies, such as charge collection narrowing effect, surface roughening effect, photoactive and electric shielding layer strategy, introduction of optical structure, charge separation inversion strategy, etc., chalcocite narrowband photodetectors have achieved excellent detection of half-peak full-widths in the range of 10-50 nm, which demonstrates a new pathway for the future of narrowband multispectral photo-detection and other novel applications.

In this review paper, the authors present the physical basis of photodetectors and their implementation strategies in narrowband detection applications, and new opportunities for narrowband photodetectors based on chalcogenide materials. The review starts with the basic operating principles of photodetectors and introduces the commonly used device structures and performance evaluation parameters of photodetectors. To provide a feasible reference for further research on novel strategies for narrowband chalcogenide photodetectors, the article outlines key realization strategies for narrowband photodetectors based on materials such as conventional semiconductor materials, organic semiconductors and colloidal quantum dots. After briefly introducing the core properties of chalcogenide materials, the technological development and latest research strategies of narrowband chalcogenide photodetectors are systematically presented. For different narrowband detection strategies, their multiple operating principles are elucidated, device architectures are demonstrated, and the advantages and limitations of chalcogenide narrowband photodetectors are analyzed one by one. In the reported work, narrowband chalcogenide photodetectors can modulate the external quantum efficiency of narrowband spectroscopy through charge collection narrowing effect, surface roughening effect, photoactive and electrically shielded layer strategy, optical structure introduction (resonant microcavity, etc.), and charge separation inversion strategy. In addition, the review also looks forward to the development trend of narrowband chalcogenide photodetectors in the fields of dual-band spectral detection (mainly in the visible and near-infrared bands), integration of broadband and narrowband bifunctional detection, array integration and image sensing, and information encryption by combining computational spectral recognition algorithms.

With the in-depth study of the properties of chalcogenide materials and the rapid development of narrow-band detection technology and other narrow-band chalcogenide photodetectors have made significant progress in recent years, but there are still many new opportunities in system-level applications, long-term stability and fine tuning of the detection spectrum. For example, the method of in-situ growth of single-crystal chalcogenide films on the transport layer can effectively reduce the crystal structure defects of chalcogenide polycrystalline films, improve the crystal quality, and enhance the device stability. Further, the combination of flexible chalcogenide single-crystal thin film technology and narrowband detection technology enables narrowband flexible chalcogenide photodetectors to be widely used in the wearable market. A narrowband chalcogenide detector array with multispectral detection is integrated using a computational spectral recognition algorithm, which can meet the requirements of multiple recognition and detection applications. In summary, the narrowband chalcogenide photodetection field has both opportunities and challenges, and in the future, along with the research and development of excellent material properties and the introduction of new device structures combined with system integration of regulatory algorithms, this direction will shine in the related fields.



Journal

Advanced Devices & Instrumentation

DOI

10.34133/adi.0006

Method of Research

News article

Subject of Research

Not applicable

Article Title

Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies

Article Publication Date

15-Feb-2023

COI Statement

None

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.