• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Reason for pancreatic cancer’s resistance to chemotherapy found

Bioengineer by Bioengineer
November 21, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A pioneering University of Liverpool research team have published a study that identifies the mechanism in the human body that causes resistance of pancreatic cancer cells to chemotherapy.

Pancreatic cancer is one of the leading causes of cancer death and current therapies are not very effective. Thus, a better understanding of the molecular mechanisms that impair the response of cancer patients to chemotherapy, the standard treatment of care for this disease, is essential to design more effective treatments for this lethal disease.

Tumour associated macrophages (TAM) and fibroblasts are non-cancerous cells that are found within solid tumours, including pancreatic cancer. Accumulating evidence suggests that TAM and fibroblasts can support cancer progression, resistance to therapy and metastasis. However, the precise mechanisms by which these cells contribute to pancreatic cancer progression and response to therapy is not completely understood.

Chemo resistance

The research team led by Dr Ainhoa Mielgo Iza, a Sir Henry Dale Fellow, from the University's Institute of Translational Medicine, has been studying how these cells contribute to chemo resistance in pancreatic cancer.

The study, which has been published in Cancer Research, found that TAM and fibroblasts directly support chemotherapy resistance of pancreatic cancer cells by secreting insulin-like growth factors.

These proteins activate a survival signalling pathway on pancreatic cancer cells making them resistant to chemotherapy.

Analysis of biopsies from pancreatic cancer patients revealed that this survival pathway is activated in 72% of the patients.

More effective treatment

Dr Mielgo, said: "These findings are very exciting because they uncover a mechanism that causes pancreatic cancer resistance to chemotherapy.

"Our research interest is to understand the complex interactions in the tumour microenvironment with the aim of finding new therapeutic targets for cancer.

"These results describe a combination treatment that could be more effective in treating this disease."

###

The study was supported by Dr Michael Schmid, Professor Fiona Campbell, Professor Sarah Coupland, Dr Pedro Perez-Mancera and by external collaborators from Cold Spring Harbor and Boehringer Ingelheim.

The study was funded by the Wellcome Trust, the Royal Society, North West Cancer Research and the Medical Research Council (MRC).

The paper, entitled "Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors", can be found here http://cancerres.aacrjournals.org/content/early/2016/11/18/0008-5472.CAN-16-1201

For more information on Dr Ainhoa Mielgo's research please visit http://www.mielgolab.org.

Media Contact

Simon Wood
[email protected]
44-151-794-8356
@livuninews

http://www.liv.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Engineering Pathogen-Activated Autoactive NLRs for Immunity

August 20, 2025
Flux-Closure Drives Azimuthal Anisotropy in Permalloy Tubes

Flux-Closure Drives Azimuthal Anisotropy in Permalloy Tubes

August 20, 2025

Research Connects Teen Vaping to Higher Risk of Smoking and Health Complications

August 20, 2025

Revolutionizing Parkinson’s Treatment with PLGA Carriers

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineering Pathogen-Activated Autoactive NLRs for Immunity

Flux-Closure Drives Azimuthal Anisotropy in Permalloy Tubes

Research Connects Teen Vaping to Higher Risk of Smoking and Health Complications

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.