• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Real-time visualization of solid-phase ion migration

Bioengineer by Bioengineer
May 6, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Zhen He,Li?Ge Chang,Yue Lin,Feng-Lei Shi,Ze-Dong Li,Jin-Long Wang,Yi Li,Rui Wang,Qing-Xia Chen,Yu-Yang Lu,Qing-Hua Zhang,Lin Gu,Yong Ni,Jian-Wei Liu,Jian-Bo Wu,Shu-Hong Yu*…

The USTC team led by Prof. YU Shuhong from University of Science and Technology of China, collaborating with Prof. WU Jianbo from Shanghai Jiao Tong University, has shed new lights on the topic of solid-phase ion migration. Researchers demonstrated a unique in-situ strategy for visualizing the dynamic solid-phase ion migration between nanostructures with nanogap at the atomic scale. The research article entitled “Real-Time Visualization of Solid-Phase Ion Migration Kinetics on Nanowire Monolayer” was published in Journal of the American Chemical Society on April 29th.

Ion migration – the ion migrates through an intact anion sublattice or metal oxide lattice – has been recognized as a critical step in determining the performance of numerous devices in chemistry, biology, and material science. The reasonable control of ion transport process would significantly improve the corresponding properties. The Ion migration is usually accompanied with charge and mass transfer, which is complex and difficult to trace. To date, efforts have been devoted to investigating the dynamic migration mechanism, such as the external heating induced or electrically activated migration. However, direct visualization and quantitative investigation of ion migration in solid-phase remain a challenging task, which has been seldom reported. The requirements for specially designed apparatus also impede the comprehensive understanding of ion migration kinetics, which hamper further practical applications in various areas.

Chemical transmission electron microscopy (ChemTEM) is a newly emerging technique that allows the chemical reaction triggered by an electron beam during the imaging process. The kinetic energy and heat effect that transferred from the e-beam to samples are mainly responsible for the bond dissociation. By adjusting the e-beam dose rate, the type and rate of chemical reactions as well as the bond dissociation can be well controlled. This experimental approach offers an opportunity to investigate the in-situ ion migration process.

Taking up the challenge, the researchers report a unique technique to investigate the solid-phase ion migration process at the atomic scale using Ag ion on Te nanowires as the research model. This complicated process was tracked not only within a single nanowire but also between two neighboring nanowires with an obvious nanogap, which was revealed by both phase-field simulation and ab initio modeling theoretical evaluation. A migration “bridge” between neighboring NWs was observed. Furthermore, these new observations could also be applied to the migration of other noble metal ions on other semiconductor nanowires (Ag ion migration on Se@Te nanowires and migration of Cu ion on Te nanowires). These findings provide critical insights into the solid-phase ion migration kinetics occurring in nanoscale systems with generality and offer an efficient tool to explore other ion migration processes, which will facilitate the fabrication of customized and new hetero-nanostructures in the future.

###

Media Contact
Jane FAN Qiong
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/jacs.0c02137

Tags: Chemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    102 shares
    Share 41 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    101 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adaptive Optimization in Integrated Energy Systems

iHALT Restores Liver’s Immune Organ Role

NLRP3 Inflammation Regulates JAK2V617F Myeloproliferative Neoplasms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.