• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Rare melanoma type highly responsive to immunotherapy

Bioengineer by Bioengineer
January 10, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

TAMPA, Fla. (Jan. 10, 2018) – Desmoplastic melanoma is a rare subtype of melanoma that is commonly found on sun-exposed areas, such as the head and neck, and usually seen in older patients. Treatment is difficult because these tumors are often resistant to chemotherapy and lack actionable mutations commonly found in other types of melanoma that are targeted by specific drugs. However, Moffitt Cancer Center researchers report in the Jan. 10 issue of Nature that patients with desmoplastic melanoma are more responsive to immune-activating anti-PD-1/PD-L1 therapies than previously assumed.

Drugs that reactivate a patient's own immune system to target cancer cells are rapidly changing the face of cancer therapy. Pembrolizumab and nivolumab have been approved to treat melanoma, and others are in development. These drugs block the interaction between the proteins PD-1 and PD-L1. During cancer development, PD-1 and PD-L1 inhibit the immune system and allow tumor cells to escape detection and continue to grow. By blocking their interaction, immune-activating drugs restimulate the immune system to detect and destroy cancer cells.

Scientists previously believed that the tissue architecture of desmoplastic melanomas would reduce the ability of immune cells to infiltrate the tumor area and limit the effectiveness of immune-activating drugs. However, based on anecdotal reports of favorable responses, a group of researchers including Moffitt's Zeynep Eroglu, M.D., Jane Messina, M.D., and Dae Won Kim, M.D., hypothesized that patients with desmoplastic melanoma may be more responsive to anti-PD-1/PD-L1 therapies than previously assumed, and explored this in the largest group of immunotherapy-treated desmoplastic melanoma patients studied to date.

To test their hypothesis, the researchers analyzed 60 patients with advanced/metastatic desmoplastic melanoma who were previously treated with a drug that targets either PD-1 or PD-L1. They discovered that 42 patients had a significant response to treatment. Approximately half of these patients had a complete response in which their tumors entirely disappeared, and the remainder had a partial response, with significant reduction of their tumors. Seventy-four percent of patients were still alive more than two years after beginning treatment. This 70 percent response rate is one of the highest reported for anti-PD-1/PD-L1 therapies to date, and is even higher than response rates commonly observed in patients with other subtypes of melanoma, which are approximately 35 to 40 percent.

In a collaborative effort involving 10 United States and international cancer centers including Moffitt and University of California Los Angeles, researchers wanted to determine the biological reasons why patients with desmoplastic melanoma may benefit from drugs that target PD-1 or PD-L1. They first confirmed that desmoplastic melanomas have high levels of DNA mutations, as they are highly associated with ultraviolet light DNA damage caused by sun exposure. NF-1 mutations were found as the most common driving genetic event. They also demonstrated that desmoplastic melanomas have the pre-existing immune cells and proteins necessary to mount an immune response against cancer cells. They compared tissue biopsies from patients with desmoplastic melanoma and non-desmoplastic melanoma. They discovered that desmoplastic melanomas have more cells with high levels of the PD-L1 protein within both the tumor and the invading edges of the tumor. Desmoplastic melanomas also have high levels of immune cells called CD8 T cells that are critical for immune-activating drugs to be effective.

"Our findings challenge the previous school of thought that immunotherapy would offer little benefit to patients with desmoplastic melanoma due to the dense tissue architecture of these tumors. These tumors in fact have the necessary biological ingredients to be very effective targets for anti-PD-1 drugs," said Eroglu, assistant member of the Cutaneous Oncology Department at Moffitt. "Often, combinations of two immunotherapy drugs are used to treat patients with melanoma to try to improve tumor response rates and survival above current reported rates. However, these combinations can lead to significantly higher rate of severe side-effects than treatment with anti-PD-1 therapy alone. Our data suggest that single-agent anti-PD-1 therapy may well be sufficient for patients with desmoplastic melanoma, potentially sparing them the increased toxicities generally observed with combinations of immunotherapies."

###

Funding for this study was provided in-part by a National Cancer Institute Skin SPORE grant (5P50CA168536) awarded to Moffitt.

About Moffitt Cancer Center

Moffitt is dedicated to one lifesaving mission: to contribute to the prevention and cure of cancer. The Tampa-based facility is one of only 49 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt's scientific excellence, multidisciplinary research, and robust training and education. Moffitt is a Top 10 cancer hospital and has been nationally ranked by U.S. News & World Report since 1999. Moffitt devotes more than 2 million square feet to research and patient care. Moffitt's expert nursing staff is recognized by the American Nurses Credentialing Center with Magnet® status, its highest distinction. With more than 5,700 team members, Moffitt has an economic impact in the state of $2.1 billion. For more information, call 1-888-MOFFITT (1-888-663-3488), visit MOFFITT.org, and follow the momentum on Facebook, Twitter and YouTube.

Media Contact

Kim Polacek
[email protected]
813-745-7408
@MoffittNews

http://www.moffitt.usf.edu

https://www.moffitt.org/newsroom/press-release-archive/2018/rare-melanoma-type-highly-responsive-to-immunotherapy/

Related Journal Article

http://dx.doi.org/10.1038/nature25187

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.