• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rapid cellphone charging getting closer to reality

Bioengineer by Bioengineer
October 25, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The ability to charge cellphones in seconds is one step closer after researchers at the University of Waterloo used nanotechnology to significantly improve energy-storage devices known as supercapacitors.

Their novel design roughly doubles the amount of electrical energy the rapid-charging devices can hold, helping pave the way for eventual use in everything from smartphones and laptop computers, to electric vehicles and high-powered lasers.

"We're showing record numbers for the energy-storage capacity of supercapacitors," said Michael Pope, a professor of chemical engineering who led the Waterloo research. "And the more energy-dense we can make them, the more batteries we can start displacing."

Supercapacitors are a promising, green alternative to traditional batteries–with benefits including improved safety and reliability, in addition to much faster charging–but applications have been limited so far by their relatively low storage capacity.

Existing commercial supercapacitors only store enough energy, for example, to power cellphones and laptops for about 10 per cent as long as rechargeable batteries.

To boost that capacity, Pope and his collaborators developed a method to coat atomically thin layers of a conductor called graphene with an oily liquid salt in supercapacitor electrodes.

The liquid salt serves as a spacer to separate the thin graphene sheets, preventing them from stacking like pieces of paper. That dramatically increases their exposed surface area, a key to maximizing energy-storage capacity.

At the same time, the liquid salt does double duty as the electrolyte needed to actually store electrical charge, minimizing the size and weight of the supercapacitor.

"That is the really cool part of this," Pope said. "It's a clever, elegant design."

The innovation also uses a detergent to reduce the size of the droplets of oily salt – which is combined with water in an emulsion similar to salad dressing – to just a few billionths of a metre, improving their coating action. The detergent also functions like chemical Velcro to make the droplets stick to the graphene.

Increasing the storage capacity of supercapacitors means they can be made small and light enough to replace batteries for more applications, particularly those requiring quick-charge, quick-discharge capabilities.

In the short term, Pope said better supercapacitors could displace lead-acid batteries in traditional vehicles, and be used to capture energy otherwise lost by buses and high-speed trains when they brake.

Further out, although they are unlikely to ever attain the full storage capacity of batteries, supercapacitors have the potential to conveniently and reliably power consumer electronic devices, electric vehicles and systems in remote locations like space.

"If they're marketed in the correct ways for the right applications, we'll start seeing more and more of them in our everyday lives," Pope said.

###

The research, which also involved Zimin She, PhD student, and Debasis Ghosh, a post-doctoral fellow, was recently published in the journal ACS Nano.

Media Contact

Matthew Grant
[email protected]
226-929-7627
@uWaterlooNews

http://www.uwaterloo.ca/

Share12Tweet7Share2ShareShareShare1

Related Posts

BmVDAC Protein Boosts Plasminogen Activation

BmVDAC Protein Boosts Plasminogen Activation

October 17, 2025
Social Determinants Affect Pregnant Women’s Alcohol Use

Social Determinants Affect Pregnant Women’s Alcohol Use

October 17, 2025

Aluminum Exposure Alters Key Metabolites in Entomoneis

October 17, 2025

Genotype-Environment Interactions in Pejerrey Sex Differentiation

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BmVDAC Protein Boosts Plasminogen Activation

Impact of Choosing Wisely on Low-Value Care

Linking Brain Waves, Balance, and Sensory Responses

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.