• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Radar better than weather balloon for measuring boundary layer

Bioengineer by Bioengineer
August 2, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: NASA's Goddard Space Flight Center

Improving forecasting for a host of severe weather events may be possible thanks to a more comprehensive method for measuring the Earth's boundary layer depth, developed by Penn State researchers.

The boundary layer is the layer of atmosphere that is closest to the Earth, less than one mile from the surface. Because it is the layer that is most affected by the convective heat from the Earth's surface, it is responsible for sudden weather shifts such as thunderstorms.

The boundary layer gets its name because it traps things such as pollution, smog, smoke from forest fires, and other airborne particles from rising higher in the atmosphere. As sun warms the surface of the Earth, it also warms the air. This warm air rises, deepening the boundary layer.

In research published in the Journal of Atmospheric and Oceanic Technology, researchers demonstrated how 159 currently operating weather radars could, in real time, track boundary layer depth, which constantly ebbs and flows. That is important because boundary layer depth is currently measured twice daily by launching weather balloons from about 100 locations nationwide.

In addition to being gathered in real time, radar measurements give a more complete analysis of the boundary layer by sending out vertical and horizontal impulses to log if snow, rain or insects are present.

Inaccuracies in boundary layer assessment lead to significant errors in forecasts, said John Banghoff, graduate student in meteorology, Penn State. Banghoff said those inaccuracies are leading to poor forecasting results.

"If we can improve the accuracy of the initial information, that's going to get a better forecast in the future," Banghoff said. "Boundary layer estimates are off by a factor of two in most models, which is very significant. If you have 200 percent error in your model, it's not going to do a very good job."

In addition to severe weather modeling, understanding boundary layer depth could improve models for air pollution and wildfire forecasting. A 2009 report by the National Research Council highlighted limitations of boundary layer depth monitoring as a major concern, citing that other monitoring methods should be explored.

Researchers used the Weather Surveillance Radar-1988 Doppler (WSR-88D) radar in Central Oklahoma to test the ability of radars to assess boundary layer depth. Banghoff said the radars offered better spatial resolution than weather balloons and were just as accurate at predicting boundary layer depth, based on results of this research. These methods were also tested in eight different regions across the country, in locations such as Minnesota in February to Arizona in August, demonstrating the seasonal reliability of this method.

"We showed that the weather balloons, which are the baseline, compare pretty well with the radar observations. Once we found that the radar offered accurate information, we began using radar data to track boundary layer depth throughout the day."

Researchers then plan to use this newly sourced radar data to fit into models, to see if the real-time data improves the models. They will use more than four years of archived data to further explore and refine the models.

Warm air creates a cap on the atmosphere, trapping cooler air below. During severe weather events, Banghoff said, the air below will heat up and pierce that cap, creating massive cumulonimbus storm clouds.

Banghoff said a similar phenomenon can be observed at the Earth's surface during fog events, where droplets of cool, moist air are trapped by the warmer air from above.

"It's kind of an obscure thing," Banghoff said. "People don't know what the boundary layer is but when you put it into context of wildfires and air pollution and severe storm forecasting then it has a lot of relevancy."

###

Other researchers on this project were David J. Stensrud, professor of meteorology and department head; and Matthew R. Kumjian, assistant professor of meteorology, both at Penn State.

The National Science Foundation supported this research.

Media Contact

A'ndrea Elyse Messer
[email protected]
814-865-9481
@penn_state

http://live.psu.edu

Share13Tweet8Share2ShareShareShare2

Related Posts

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025
blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Environmental and Economic Effects of Farming Systems

Cyclic Stretch Enhances Chondrogenesis in Stem Cells

Respect and Healthcare Equity for Transgender Communities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.