• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Quick and not-so-dirty: A rapid nano-filter for clean water

Bioengineer by Bioengineer
September 20, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: RMIT University

Australian researchers have designed a rapid nano-filter that can clean dirty water over 100 times faster than current technology.

Simple to make and simple to scale up, the technology harnesses naturally occurring nano-structures that grow on liquid metals.

The RMIT University and University of New South Wales (UNSW) researchers behind the innovation have shown it can filter both heavy metals and oils from water at extraordinary speed.

RMIT researcher Dr Ali Zavabeti said water contamination remains a significant challenge globally – 1 in 9 people have no clean water close to home.

"Heavy metal contamination causes serious health problems and children are particularly vulnerable," Zavabeti said.

"Our new nano-filter is sustainable, environmentally-friendly, scalable and low cost.

"We've shown it works to remove lead and oil from water but we also know it has potential to target other common contaminants.

"Previous research has already shown the materials we used are effective in absorbing contaminants like mercury, sulfates and phosphates.

"With further development and commercial support, this new nano-filter could be a cheap and ultra-fast solution to the problem of dirty water."

The liquid metal chemistry process developed by the researchers has potential applications across a range of industries including electronics, membranes, optics and catalysis.

"The technique is potentially of significant industrial value, since it can be readily upscaled, the liquid metal can be reused, and the process requires only short reaction times and low temperatures," Zavabeti said.

Project leader Professor Kourosh Kalantar-zadeh, Honorary Professor at RMIT, Australian Research Council Laureate Fellow and Professor of Chemical Engineering at UNSW, said the liquid metal chemistry used in the process enabled differently shaped nano-structures to be grown, either as the atomically thin sheets used for the nano-filter or as nano-fibrous structures.

"Growing these materials conventionally is power intensive, requires high temperatures, extensive processing times and uses toxic metals. Liquid metal chemistry avoids all these issues so it's an outstanding alternative."

How it works

The groundbreaking technology is sustainable, environmentally-friendly, scalable and low-cost.

The researchers created an alloy by combining gallium-based liquid metals with aluminium.

When this alloy is exposed to water, nano-thin sheets of aluminium oxide compounds grow naturally on the surface.

These atomically thin layers – 100,000 times thinner than a human hair – restack in a wrinkled fashion, making them highly porous.

This enables water to pass through rapidly while the aluminium oxide compounds absorbs the contaminants.

Experiments showed the nano-filter made of stacked atomically thin sheets was efficient at removing lead from water that had been contaminated at over 13 times safe drinking levels, and was highly effective in separating oil from water.

The process generates no waste and requires just aluminium and water, with the liquid metals reused for each new batch of nano-structures.

The method developed by the researchers can be used to grow nano-structured materials as ultra-thin sheets and also as nano-fibres.

These different shapes have different characteristics – the ultra-thin sheets used in the nano-filter experiments have high mechanical stiffness, while the nano-fibres are highly translucent.

The ability to grow materials with different characteristics offers opportunities to tailor the shapes to enhance their different properties for applications in electronics, membranes, optics and catalysis.

The research is funded by the Australian Research Council Centre for Future Low-Energy Electronics Technologies (FLEET).

The findings are published in the journal Advanced Functional Materials (DOI: 10.1002/adfm.201804057).

###

Media Contact

Gosia Kaszubska
[email protected]
61-417-510-735
@RMIT

http://www.rmit.edu.au

Related Journal Article

http://dx.doi.org/10.1002/adfm.201804057

Share12Tweet7Share2ShareShareShare1

Related Posts

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting Lipid Metabolism to Enhance Antitumor Immunity

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Uncovering Gaps in Rehab for Hospitalized Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.