• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Quick-and-dirty DNA repair sets the stage for smoking-related lung cancer

Bioengineer by Bioengineer
January 26, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The stem cells that proliferate the most in response to damage caused by cigarette smoke repair their DNA using a process prone to errors, setting the stage for lung cancer, according to a study publishing January 26, 2017 in the open-access journal PLOS Biology by Marie-Liesse Asselin-Labat and her team of the Walter and Eliza hall Institute of Medical Research, Australia.

Smoking is a strong risk factor for squamous cell carcinoma, the second most common form of lung cancer, but the relative contributions to carcinogenesis of two types of lung stem cells (basal cells and alveolar progenitor cells) –and the molecular reasons for accumulation of the DNA damage that leads to cancer — have not been clear. To explore these issues, the authors isolated both types of cells from the lungs of heavy smokers and compared the activity of their genes, their rates of cell division, and their ability to repair their DNA in response to damage.

They found that carcinoma cells from smokers carried the "transcriptional fingerprint" (i.e. the pattern of genes that were switched on or off) of basal cells, suggesting that the tumors may originate from this type of cell. They showed that basal cells were much more efficient at repairing DNA damage, allowing them to survive and reproduce following exposure to chemicals or radiation that damaged the DNA. However, the principal repair pathway used by basal cells, called "non-homologous end joining," introduced many errors into the DNA. The combination of rapid but error-prone repair, the authors suggest, leads basal cells to accumulate a high burden of mutations that ultimately leads to carcinoma.

"Our results indicate that targeting DNA repair processes may be a promising approach to preventing and treating this form of lung cancer," said Asselin-Labat.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.plos.org/10.1371/journal.pbio.2000731

Citation: Weeden CE, Chen Y, Ma SB, Hu Y, Ramm G, Sutherland KD, et al. (2017) Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol 15(1): e2000731. doi:10.1371/journal.pbio.2000731

Funding: Australian Post-graduate Award. Received by CEW. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Victorian State Government Operational Infrastructure Support. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Health and Medical Research Council (grant number 1058892 and 1054618). Received by GKS. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Victorian Cancer Agency (grant number TS10-18). Received by MLAL. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Viertel Charitable Foundation Senior Medical Research Fellowship. Recevied by MLAL. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CRC Cancer Therapeutics PhD Top-up Scholarship. Received by CEW. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Australian Government NHMRC IRIISS. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Marie-Liesse Asselin-Labat
[email protected]

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Assessing Drug Interactions in Neonatal Care Software

October 5, 2025

Unveiling AGC2 Modulators through Advanced Assay Techniques

October 5, 2025

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

October 5, 2025

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Drug Interactions in Neonatal Care Software

Unveiling AGC2 Modulators through Advanced Assay Techniques

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.