• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quantum simulation more stable than expected

Bioengineer by Bioengineer
April 12, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Quantum localization bounds Trotter errors in digital quantum simulation

IMAGE

Credit: IQOQI Innsbruck/Harald Ritsch

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the solution of quantum many-body problems utilizing the concept of digital quantum simulation”, says Markus Heyl from Max Planck Institute for the Physics of Complex in Dresden, Germany. “Such simulations could have a major impact on quantum chemistry, materials science and fundamental physics.” Within digital quantum simulation the time evolution of the targeted quantum many-body system is realized by a sequence of elementary quantum gates by discretizing time evolution, called Trotterization. “A fundamental challenge, however, is the control of an intrinsic error source, which appears due to this discretization”, says Markus Heyl. Together with Peter Zoller from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Communication at the Austrian Academy of Sciences and Philipp Hauke from the Kirchhoff Institute for Physics and the Institute for Theoretical Physics at the University of Heidelberg they show in a recent paper in Science Advances that quantum localization-by constraining the time evolution through quantum interference-strongly bounds these errors for local observables.

More robust than expected

“Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function”, Heyl summarizes. This robustness is characterized by a sharp threshold as a function of the utilized time granularity measured by the so-called Trotter step size. The threshold separates a regular region with controllable Trotter errors, where the system exhibits localization in the space of eigenstates of the time-evolution operator, from a quantum chaotic regime where errors accumulate quickly rendering the outcome of the quantum simulation unusable. “Our findings show that digital quantum simulation with comparatively large Trotter steps can retain controlled Trotter errors for local observables”, says Markus Heyl. “It is thus possible to reduce the number of quantum gate operations required to represent the desired time evolution faithfully, thereby mitigating the effects of imperfect individual gate operations.” This brings digital quantum simulation for classically challenging quantum many-body problems within reach for current day quantum devices.

###

Media Contact
Markus Heyl
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aau8342

Tags: Atomic PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

School Readiness Challenges Linked to Prematurity

Drivers of Increased Treatment for Uncontrolled Hypertension

Nurses’ Attitudes and Missed Care: A Predictive Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.