• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Quantum probes dramatically improve detection of nuclear spins

Bioengineer by Bioengineer
July 3, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: David A. Broadway/cqc2t.org

Researchers at the University of Melbourne have demonstrated a way to detect nuclear spins in molecules non-invasively, providing a new tool for biotechnology and materials science.

Important research in medicine and biology relies on nuclear magnetic resonance (NMR) spectroscopy, but until now, it has been limited in spatial resolution and typically requires powerful microwave fields. A team led by Professor Lloyd Hollenberg at the University of Melbourne has used a quantum probe to perform microwave-free NMR at the nanoscale. The results were published today in Nature Communications.

"This quantum probe delivers a dramatic improvement in NMR technology. In addition to being able to detect NMR in far smaller samples than conventional machines, our technique does not require the application of microwave fields that might disrupt biological samples" said Hollenberg, who is Deputy Director of the Centre for Quantum Computation and Communication Technology (CQC2T) and Thomas Baker Chair at the University of Melbourne.

"In NMR the goal is to detect the magnetic signal from the nuclei of the atoms comprising molecules. But the signal from the nuclear "spin" is very weak and conventional NMR machines require many millions of nuclear spins to detect anything. However, using the quantum properties of a 'defect' in diamond, our technique can detect much smaller volumes down to only thousands of spins."

The discovery may overcome significant limitations with conventional NMR methods, which depend on machines that can exceed 10 tonnes.

"The problem with the large NMR machines in widespread use today is that the signals we're trying to detect are extremely small, and the distance from the measurement device to the object being measured is very large," said Dr. Alastair Stacey, a CQC2T postdoctoral researcher.

"This creates two problems: The machine can only see a larger collection of molecules, reducing the accuracy of the measurement. It also has to use very strong microwaves and magnetic fields to reach the sample, but these processes are invasive and can affect delicate bio-samples, just like the microwave in your kitchen, particularly when trying to see the molecular structure of liquids."

Lead author James Wood describes the technique as "a dramatic simplification of the nuclear detection process, where we essentially shine light on an atomic-sized defect in diamond and observe its natural response, at a fundamentally quantum level, to the target nuclear spins nearby".

"A great benefit of our approach is that we don't interfere with the sample when imaging it."

The technique offers new opportunities for researchers.

"With these advances in quantum sensing technology, we are opening the door to a new world of scientific investigation that could lead us to gain a better understanding of the smallest building blocks of life," said Hollenberg.

###

The research is supported with funding from the Australian Research Council through the Centre of Excellence and Laureate Fellowship programs.

Media Contact

Nerissa Hannink
[email protected]
043-058-8055
@cqc2t_

Home

Related Journal Article

http://dx.doi.org/10.1038/NCOMMS15950

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Cumulative Blood Pressure Linked to Cognitive Decline in Seniors

November 7, 2025

Gender Differences in Serum Metabolites After Intense Exercise

November 7, 2025

Assessing Saliva Nucleic Acid Extraction for Forensics

November 7, 2025

Optimizing Medication Processes in Nursing Homes Trial

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cumulative Blood Pressure Linked to Cognitive Decline in Seniors

Gender Differences in Serum Metabolites After Intense Exercise

Assessing Saliva Nucleic Acid Extraction for Forensics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.