• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quantum causal loops

Bioengineer by Bioengineer
February 9, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @ULB

Causal reasoning is ubiquitous – from physics to medicine, economics and social sciences, as well as in everyday life. Whenever we press the button, the bell rings, and we think that the pressing of the button causes the bell to ring. Normally, causal influence is assumed to only go one way – from cause to effect – and never back from the effect to the cause: the ringing of the bell does not cause the pressing of the button that triggered it. Now researchers from the University of Oxford and the Université libre de Bruxelles have developed a theory of causality in quantum theory, according to which cause-effect relations can sometimes form cycles. This theory offers a novel understanding of exotic processes in which events do not have a definite causal order. The study has been published in Nature Communications.

One of the ways in which quantum theory defies classical intuitions is by challenging our ideas of causality. Quantum entanglement can be used to produce correlations between distant experiments that are known to evade satisfactory causal explanations within the framework of classical causal models. Furthermore, a unification of quantum theory and gravity is expected to allow situations in which the causal structure of spacetime is subject to quantum indefiniteness, suggesting that events need not be causally ordered at all. Recently, a team of researchers from Oxford and Brussels has developed a theory of causality in quantum theory, in which causal concepts are defined in intrinsically quantum terms rather than pertaining to an emergent classical level of measurement outcomes. This has offered, in particular, a causal understanding of the correlations produced by entangled states. Now, they have generalized the theory to allow causal influence to go in cycles, providing a causal understanding of processes with events in indefinite causal order.

“The key idea behind our proposal is that causal relations in quantum theory correspond to influence through so-called unitary transformations – these are the types of transformations that describe the evolutions of isolated quantum systems. This is closely analogous to an approach to classical causal models that assumes underlying determinism and situates causal relations in functional dependences between variables,” says Jonathan Barrett from the University of Oxford.

The main idea of the new study is to apply the same principle to processes in which the order of operations can be dynamical or even indefinite, seeing as a large class of these processes can be understood as arising from unitary transformations, too, just not ones that unfold in an ordinary sequence.

“Previously, processes with indefinite causal order were typically regarded as simply incompatible with any causal account. Our work shows that a major class of them – those that can be understood as arising from unitary processes and which are believed to be the ones that could have a physical realisation in nature – could in fact be seen as having a definite causal structure, albeit one involving cycles,” says Robin Lorenz, a corresponding author of the study.

“The idea of cyclic causal structures may seem counterintuitive, but the quantum process framework within which it is formulated guarantees that it is free of logical paradoxes, such as the possibility of going back in time and killing your younger self,” explains Ognyan Oreshkov from the Université libre de Bruxelles. “Exotic as they appear, some of these scenarios are actually known to have experimental realisations in which the variables of interest are delocalized in time.”

Does this mean that spacetime does not have the acyclic causal structure it is normally assumed to have? Not exactly, since in the mentioned experiments the events that are causally related in a cyclic fashion are not local in spacetime. However, the researchers believe that the causal structure of spacetime itself could become cyclic in this quantum way at the intersection of quantum theory and general relativity, where analogous processes to those realizable in the lab are expected, but with the events being local in their respective spacetime reference frames.

###

Media Contact
Ognyan Oreshkov
[email protected]

Original Source

http://ulb.be

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20456-x

Tags: AstrophysicsAtomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Hundreds of Satellite Systems Discovered Orbiting Dwarf Galaxies in New Survey

August 5, 2025
Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

August 5, 2025

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

August 5, 2025

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enamel Rod-End Patterns: New Forensic ID Tool?

Lab Study of α-1,6-Glucosylated Steviol Glycosides Metabolism

Illuminating Solutions: Harnessing Sunlight and Oil to Tackle Pollution

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.