• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Quantitative diagnosis of bowel ischemia with deep learning

Bioengineer by Bioengineer
November 29, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bowel ischemia is a potentially fatal medical condition caused by a decrease or obstruction of blood flow to the intestine. It is linked to many serious gastrointestinal disorders that can have long-term and deadly effects. Left untreated, it quickly progresses to irreversible intestinal necrosis that, in turn, leads to fatal metabolic disorders and end-organ dysfunction. As a result, the timely surgical treatment of this condition is critical.

Intestinal-ischemia-figure

Credit: Yaning Wang, et al

Bowel ischemia is a potentially fatal medical condition caused by a decrease or obstruction of blood flow to the intestine. It is linked to many serious gastrointestinal disorders that can have long-term and deadly effects. Left untreated, it quickly progresses to irreversible intestinal necrosis that, in turn, leads to fatal metabolic disorders and end-organ dysfunction. As a result, the timely surgical treatment of this condition is critical.

The current intraoperative evaluation of bowel perfusion (blood flow to the intestine) is based on subjective assessment of human surgeons, owing to the lack of a reliable marker. This leaves the door open for mistakes with serious long-term health consequences. A quantitative and objective assessment of bowel perfusion is, therefore, imperative. 

Now, an international research team has addressed this problem. In a recent study published in the SPIE Journal of Medical Imaging, the researchers developed a deep learning model based on a conditional generative adversarial network (cGAN) and used it to analyze data from laser speckle contrast imaging (LSCI) combined with a visible-light camera to identify regions of abnormal tissue perfusion.

“Our vision platform is built around a dual-modality bench-top imaging system with red-green-blue (RGB) and dye-free LSCI channels. We used a preclinical model to gather data on bowel mesenteric vascular structures with normal/abnormal microvascular perfusion to create a control/experimental group. We then trained our model with the normal dataset and used the abnormal data for testing,” explains the lead author Jaepyeong Cha, Associate Professor and Principal Investigator at the Sheikh Zayed Institute for Surgical Innovation.

cGAN detects ischemic bowel regions by monitoring the erroneous reconstruction from the latent feature space, an embedding space that places items resembling one another close to each other. The main benefit of cGAN is that it is unsupervised, meaning that it does not need any prior manual tagging of data to detect patterns. “In fact, it provides well-defined segmentation results for different levels of ischemia when compared to the traditional qualitative LSCI technique,” highlights Cha.

Using a collection of 2560 RGB/LSCI image pairs, the researchers demonstrated that their model could accurately segment ischemic intestine images with an accuracy of over 93%, which compared favorably with subjective current methods. Multiple and independent estimations were used to label the images, which combined annotations from surgeons with an optimization algorithm called “fastest gradient descent” in suspicious areas of vascular images. For a 256 × 256 image, the total processing time for the deep learning method was a mere fraction (0.05) of a second. Overall, the model outperformed the raw LSCI images in terms of pixelwise probability distribution of intestinal ischemia.

The proposed model provides a pixel-wise and quantitative analysis of intestinal perfusion, making it reliable and superior to the standard procedures – and promising better surgical outcomes. “It has the potential to help surgeons improve the clinical outcomes of mesenteric ischemia and other gastrointestinal surgeries by increasing the accuracy of intraoperative diagnosis,” says Cha. “With a computer-aided detection platform combined with cGAN, they would be able to predict healthy tissue perfusion patterns from color RGB images and recognize ischemic areas at risk.”

Read the Gold Open Access article by Y. Wang et al., “Unsupervised and quantitative intestinal ischemia detection using conditional adversarial network in multimodal optical imaging,” J. Medical Imaging 9(6), 064502, doi 10.1117/1.JMI.9.6.064502.



Journal

Journal of Medical Imaging

DOI

10.1117/1.JMI.9.6.064502

Method of Research

Imaging analysis

Subject of Research

People

Article Title

Unsupervised and quantitative intestinal ischemia detection using conditional adversarial network in multimodal optical imaging

Article Publication Date

28-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Weight Bias in Pediatric Care: A Closer Look

August 27, 2025

One in Seven Bariatric Surgery Patients Adopt New Weight Loss Medications

August 27, 2025

Artificial Uterus and Embryos: Challenges Ahead

August 27, 2025

Hip Joint Fit and Activity Influence Acetabular Coverage

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weight Bias in Pediatric Care: A Closer Look

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

Transforming Addiction: The Role of Designer Proteins in Rewiring Neural Pathways

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.