• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Quantifying evolutionary impacts of humans on the biosphere is harder than it seems

Bioengineer by Bioengineer
October 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Andrew Hendry

Are human disturbances to the environment driving evolutionary changes in animals and plants? A new study conducted by McGill researchers finds that, on average, human disturbances don't appear to accelerate the process of natural selection. While the finding may seem reassuring, this unexpected pattern could reflect the limited number of species for which data were available.

Many studies have shown that species evolve in response to human activity at a pace that exceeds natural rates: fish species often become smaller as humans selectively harvest the biggest fish; weeds and insect pests are becoming resistant to pesticides, and pathogens are becoming more resistant to antibiotics.

Rapid evolution in response to human activities could be caused by a strengthening of natural selection, a key influence on the pace of evolution. To better understand the extent to which this occurs, Vincent Fugère and Andrew Hendry from McGill's Department of Biology reviewed thousands of scientific papers on the topic. Of these, they retained 40 that provide estimates of "selection strength" – the extent to which a particular trait is linked to survival or reproductive success ('Darwinian fitness') – in both human-disturbed and natural environments. These cases included, for instance, a weed species found in grasslands sprayed or not sprayed with herbicides; another involved a shark population before and after the construction of a beach resort that induced altered the local mangrove habitat.

From the 40 selected studies, the authors compiled 1,366 estimates covering 102 traits in 37 different species. They then used statistical models to test if there was an overall trend of stronger selection in human-disturbed conditions. While some disturbances caused very strong human-induced selection, others weakened selection, leading to no net effect on average when pooling all available studies.

"We are not arguing that human disturbances do not cause evolution; in fact, I certainly believe the opposite," says Fugère, lead author of the new paper published in Proceedings of the National Academy of Sciences.

Rather, the finding, which is likely to surprise some evolutionary biologists, highlights the challenges of quantifying evolutionary impacts of humans on the biosphere.

For example, most species in the authors' database performed well (had higher 'fitness') in the disturbed environment, which can weaken estimates of selection strength for statistical reasons. "Biologists know that many species who do poorly in human-impacted environments often go extinct in these environments, a phenomenon known as local extinction, says Fugère. Rates of local extinction have never been higher, yet no species included in our database became locally extinct. So part of the explanation for our main conclusion is that researchers might be studying species that fare relatively better in such environments than the average species on Earth because one can only study selection in species that survive in impacted environments."

Fugère and Hendry hope that their unexpected result will guide future studies of natural selection and help us better understand evolutionary impacts of environmental changes caused by humans.

###

This research was funded by the Natural Sciences and Engineering Research Council of Canada.

"Human influences on the strength of phenotypic selection" by Vincent Fugère and Andrew P. Hendry was published in PNAS.

Media Contact

Justin Dupuis
[email protected]
514-398-6751
@McGillU

http://www.mcgill.ca

Original Source

https://www.mcgill.ca/newsroom/channels/news/quantifying-evolutionary-impacts-humans-biosphere-harder-it-seems-290559 http://dx.doi.org/10.1073/pnas.1806013115

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Unraveling Tetracladium Spp.: Ecological Versatility Revealed

November 6, 2025
Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

November 6, 2025

Island reptiles risk extinction before scientific study, warns global review

November 6, 2025

Revamping Genome-Wide Metabolic Model for Streptococcus suis

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Consumer Willingness to Pay in Sustainable Fashion

Mapping Telencephalic GABAergic Neurons Transcriptomics

Unleashing β-Glucosidase from Rasamsonia for Sugarcane Saccharification

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.