• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells

Bioengineer by Bioengineer
June 7, 2024
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The quest for efficient and clean energy sources has led to the exploration of ammonia as a hydrogen carrier due to its high hydrogen content, energy density, and ease of liquefaction. Solid oxide fuel cells (SOFCs) are highly efficient electrochemical devices that can utilize fuels like hydrogen and hydrocarbons. However, the storage and transportation of hydrogen pose significant challenges due to its low bulk density and boiling point. Ammonia-based SOFCs offer a promising alternative, and optimizing their performance at intermediate temperatures is a key area of interest.

IMAGE

Credit: HIGHER EDUCATION PRESS

The quest for efficient and clean energy sources has led to the exploration of ammonia as a hydrogen carrier due to its high hydrogen content, energy density, and ease of liquefaction. Solid oxide fuel cells (SOFCs) are highly efficient electrochemical devices that can utilize fuels like hydrogen and hydrocarbons. However, the storage and transportation of hydrogen pose significant challenges due to its low bulk density and boiling point. Ammonia-based SOFCs offer a promising alternative, and optimizing their performance at intermediate temperatures is a key area of interest.

A research group of Fulan Zhong and Yu Luo from Fuzhou University focused on the development of pyrochlore La2Zr2–xNixO7+δ (LZNx) oxides as anode catalysts for NH3-SOFCs. The team investigated the effects of Ni2+ doping on the crystal structure, surface morphology, thermal matching with Yttria-stabilized zirconia (YSZ), conductivity, and electrochemical performance of these oxides.

The LZNx oxides were found to exhibit n-type semiconductor behavior with excellent high-temperature chemical compatibility and thermal matching with the YSZ electrolyte. Additionally, LZN0.05 demonstrated the smallest conductive band potential and bandgap, leading to a higher power density as anode material for NH3-SOFCs. The LZN0.05-40YSZ composite anode achieved a maximum power density of 100.86 mW/cm2 at 800 °C, which is 1.8 times greater than that of NiO-based NH3-SOFCs under identical conditions. Moreover, the LZN0.05-40YSZ composite anode showed negligible voltage degradation after continuous operation at 800 °C for 100 h, indicating its extended durability.

The development of LZNx anodes addresses a critical need for efficient anode catalysts in NH3-SOFCs, offering a significant step forward in the support of the hydrogen economy through ammonia utilization. The improved conductivity and electrochemical performance, coupled with the demonstrated durability, suggest that these materials could play a pivotal role in the future of clean energy generation.



Journal

Frontiers in Energy

DOI

10.1007/s11708-024-0948-2

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells

Article Publication Date

3-Jun-2024

Share12Tweet7Share2ShareShareShare1

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1123 shares
    Share 448 Tweet 280
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Unique Profiles of Nonverbal Learning Disability, Advancing Diagnosis and Treatment Approaches

Decoding the Recipe for a Potent Plant-Based Medicine

Sperm Sequencing Uncovers Widespread Male Germline Selection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.