• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Pushed to the limit: A CMOS-based transceiver for beyond 5G applications at 300 GHz

Bioengineer by Bioengineer
February 5, 2021
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ISSCC 2021

Scientists at Tokyo Institute of Technology (Tokyo Tech) and NTT Corporation (NTT) develop a novel CMOS-based transceiver for wireless communications at the 300 GHz band, enabling future beyond-5G applications. Their design addresses the challenges of operating CMOS technology at its practical limit and represents the first wideband CMOS phased-array system to operate at such elevated frequencies.

Communication at higher frequencies is a perpetually sought-after goal in electronics because of the greater data rates that would be possible and to take advantage of underutilized portions of the electromagnetic spectrum. Many applications beyond 5G, as well as the IEEE802.15.3d standard for wireless communications, call for transmitters and receivers capable of operating close to or above 300 GHz.

Unfortunately, our trusty CMOS technology is not entirely suitable for such elevated frequencies. Near 300 GHz, amplification becomes considerably difficult. Although a few CMOS-based transceivers for 300 GHz have been proposed, they either lack enough output power, can only operate in direct line-of-sight conditions, or require a large circuit area to be implemented.

To address these issues, a team of scientists from Tokyo Tech, in collaboration with NTT, proposed an innovative design for a 300 GHz CMOS-based transceiver (Figure 1). Their work will be presented in the Digests of Technical Papers in the 2021 IEEE ISSCC (International Solid-State Circuits Conference), a conference where the latest advances in solid-state and integrated circuits are exposed.

One of the key features of the proposed design is that it is bidirectional; a great portion of the circuit, including the mixer, antennas, and local oscillator, is shared between the receiver and the transmitter (Figure 2). This means the overall circuit complexity and the total circuit area required are much lower than in unidirectional implementations.

Another important aspect is the use of four antennas in a phased array configuration. Existing solutions for 300 GHz CMOS transmitters use a single radiating element, which limits the antenna gain and the system’s output power. An additional advantage is the beamforming capability of phased arrays, which allows the device to adjust the relative phases of the antenna signals to create a combined radiation pattern with custom directionality. The antennas used are stacked “Vivaldi antennas,” which can be etched directly onto PCBs, making them easy to fabricate.

The proposed transceiver uses a subharmonic mixer, which is compatible with a bidirectional operation and requires a local oscillator with a comparatively lower frequency. However, this type of mixing results in low output power, which led the team to resort to an old yet functional technique to boost it. Professor Kenichi Okada from Tokyo Tech, who led the study, explains: “Outphasing is a method generally used to improve the efficiency of power amplifiers by enabling their operation at output powers close to the point where they no longer behave linearly–that is, without distortion. In our work, we used this approach to increase the transmitted output power by operating the mixers at their saturated output power.” Another notable feature of the new transceiver is its excellent cancellation of local oscillator feedthrough (a “leakage” from the local oscillator through the mixer and onto the output) and image frequency (a common type of interference for the method of reception used).

The entire transceiver was implemented in an area as small as 4.17 mm2. It achieved maximum rates of 26 Gbaud for transmission and 18 Gbaud for reception, outclassing most state-of-the-art solutions. Excited about the results, Okada remarks: “Our work demonstrates the first implementation of a wideband CMOS phased-array system that operates at frequencies higher than 200 GHz.” Let us hope this study helps us squeeze more juice out of CMOS technology for upcoming applications in wireless communications!

###

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.
https://www.titech.ac.jp/english/

About NTT Corporation

NTT believes in resolving social issues through our business operations by applying technology for good. We help clients accelerate growth and innovate for current and new business models. Our services include digital business consulting, technology and managed services for cybersecurity, applications, workplace, cloud, datacenter and networks all supported by our deep industry expertise and innovation.

As a top 5 global technology and business solutions provider, our diverse teams operate in 80+ countries and regions and deliver services to over 190 of them. We serve over 80% of Fortune Global 100 companies and thousands of other clients and communities around the world.

For more information on NTT, visit http://www.global.ntt/.

Media Contact
Emiko Kawaguchi
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2021/048934.html

Tags: Electrical Engineering/ElectronicsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Integrating Genetics, Modeling, and Climate Data: A Breakthrough Method for Predicting Rice Flowering

August 1, 2025
Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

August 1, 2025

Developing Neonatal Point-of-Care Ultrasound Programs

August 1, 2025

DCAF13 Crucial for Mouse Uterine Function, Fertility

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Genetics, Modeling, and Climate Data: A Breakthrough Method for Predicting Rice Flowering

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Developing Neonatal Point-of-Care Ultrasound Programs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.