• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pusan National University researchers develop non-intrusive sensor for pipeline monitoring

Bioengineer by Bioengineer
March 29, 2023
in Chemistry
Reading Time: 4 mins read
0
A novel non-intrusive sensor system for Monitoring Pipeline Integrity
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Unexpected pipeline failures can lead to leakages that pollute the environment and compromise public safety, thereby underscoring the importance of accurate, real-time pipeline monitoring. Pipelines on naval ships that are a part of fire-extinguishing and cooling systems are especially prone to damage due to frequent projectile launches and collisions.

A novel non-intrusive sensor system for Monitoring Pipeline Integrity

Credit: Yun-ho Shin from Pusan National University

Unexpected pipeline failures can lead to leakages that pollute the environment and compromise public safety, thereby underscoring the importance of accurate, real-time pipeline monitoring. Pipelines on naval ships that are a part of fire-extinguishing and cooling systems are especially prone to damage due to frequent projectile launches and collisions.

There are two kinds of sensors for this purpose—intrusive and non-intrusive. Intrusive sensors are highly accurate sensors that measure pressure or mass flow must be pre-installed during the construction of the pipeline. Non-intrusive sensors, on the other hand, use light and sound-based measurement systems. They can be installed after a pipeline is constructed, thereby offering more flexibility. However, non-intrusive sensors are expensive are affected by environmental conditions and noise.

To overcome these limitations, a group of researchers led by Assistant Professor Yun-ho Shin of the Department of Naval Architecture and Ocean Engineering at Pusan National University, has proposed a novel non-intrusive sensor system based on a low-cost, force-sensing resistor (FSR). The research was conducted jointly with the Korea Institute of Machinery and Materials (KIMM) and was made published online in the Structural Control and Health Monitoring journal on 7 February 2023.     

The sensor consists of a stiff clamping band with an FSR that contains conductive particles in a non-conductive polymer. “When the pressure inside a pipe increases, the contact force between the pipe and clamping band also increases. That, in turn, compresses the FSR. As a result, the conductive particles come closer to each other, and current starts flowing in the non-conductive polymer due to quantum tunneling. This brings down the FSR resistance. Hence, the sensor can indirectly measure pipe pressure and detect changes in it,” explains Prof. Shin. The researchers found that the novel sensor’s measurements showed a 99.4% correlation with a commercial, intrusive sensor, emphasizing its accuracy.

The researchers then utilized the Euclidean distance method to determine where the sensors must be optimally placed in a pipeline network. Based on its results, they installed two sensors on a naval ship-like fire main pipeline system. Their data was fed to support vector machine—a machine learning-based classification algorithm—which allowed them to detect the type and location of damages in the system rapidly and accurately.

“The FSR-based sensors can be applied to any pipeline system in industries with a high risk of pipe failure, including nuclear power plants and naval ships. They will also reduce required manual work by automating pipe integrity monitoring,” concludes Prof. Shin.

The novel, low-cost, FSR-based non-intrusive sensor system paves the way toward more robust pipeline safety, thereby displaying the potential to protect human health, as well as environmental health.

 

***

 

Reference

DOI: https://doi.org/10.1155/2023/4676060

Authors: Jin-woo Park1, Byung Chang Jung1, Sang Hyuk Lee1, Young Cheol Huh1, and Yun-ho Shin2,

Affiliations: 1Department of System Dynamics, Korea Institute of Machinery & Materials, South Korea; 2 Department of Naval Architecture & Ocean Engineering, Pusan National University, South Korea

 

About Pusan National University

Pusan National University, located in Busan, South Korea, was founded in 1946, and is now the no. 1 national university of South Korea in research and educational competency. The multi-campus university also has other smaller campuses in Yangsan, Miryang, and Ami. The university prides itself on the principles of truth, freedom, and service, and has approximately 30,000 students, 1200 professors, and 750 faculty members. The university is composed of 14 colleges (schools) and one independent division, with 103 departments in all.    

Website: https://www.pusan.ac.kr/eng/Main.do

 

About the author

Yun-ho Shin is an Assistant Professor at the Department of Naval Architecture and Ocean Engineering at Pusan National University (PNU). In 2009, he received a Ph.D. from the Korea Advanced Institute of Science and Technology. He was a Senior Researcher at the Korea Institute of Machinery and Materials before joining PNU. Prof. Shin has published 150 research articles which have been cited 400 times. His research interests include vibration visualization, vibration control, and naval ship survivability. His group is currently developing an autonomous recovery and monitoring system for pipeline integrity and image processing technology for vibration visualization.

Lab website address: https://sites.google.com/view/isvlab/home

ORCID id: 0000-0002-3117-4818



Journal

Structural Control and Health Monitoring

DOI

10.1155/2023/4676060

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Non-intrusive Sensor System Developed using a Force-sensing Resistor for Pipeline Integrity Monitoring

Article Publication Date

7-Feb-2023

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

VDAC1 Analysis and Natural Inhibitors in Gynecological Tumors

Kinesin Proteins in Ovarian Cancer: Mechanisms to Medicine

CAR T-Cell and TIL Therapies in GI Cancers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.