• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Pungent-variable of sweet chili pepper Shishito: genes and seeds

Bioengineer by Bioengineer
March 9, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Copyright © 2021, Fumiya Kondo, Kenichi Matsushima et al., Shinshu University, under exclusive licence to Springer Nature Switzerland AG, part of Springer Nature

Chili peppers (Capsicum spp.) are an important spice and vegetable that supports food culture around the world, whose intensity of its pungent taste is determined by the content of capsicumoids. However, the content of capsicumoids varies depending on the variety and is known to fluctuate greatly depending on the cultivation environment. This can be a big problem in the production, processing and distribution of peppers where sweet varieties can be spicy and highly spicy varieties are just only mildly spicy. It is thought that changes in the expression of multiple genes involved in capsaicinoid biosynthesis are involved in such changes in pungent taste depending on the cultivation environment, but the mechanism is not clear.

In Japan, the main variety of pepper is the vegetable pepper “Shishito”, which has almost no spiciness. However, sometimes spicy fruits are produced, which makes eating shishito like playing Russian roulette. People have known from experience that “fruits with a fewer number of seeds are spicy”. Researchers set out to determine the number of seeds inside the shishito pepper and the intensity of pungency of the fruit, and the gene expression control mechanism that causes the fluctuation of the pungency of the shishito fruit.

Corresponding author, Associate Professor Kenichi Matsushima of the Institute of Agriculture, Shinshu University states that the pungency of chili peppers with fewer seeds is more likely to fluctuate in pungency and that these pungency fluctuations are caused by the expression of multiple genes involved in capsaicinoid synthesis.

The research group investigated the pungent intensity of shishito fruits with a variety of number of seeds, with a tasting test and measurement of the capsaicinoid content. The placentation/partition (taiza/kakuheki) tissue in the fruit where capsaicinoids are synthesized was vertically divided into two equal parts, one was measured for pungent intensity and the other for the expression of genes involved in capsaicinoid synthesis. As a result, the spiciness of the shishito fruit with a large number of seeds was very weak, whereas the spiciness of the fruits with a small number of seeds ranged from weak to strong.

The group investigated the relationship between the intensity of pungency and the degree of gene function within the same fruit. As a result, among the genes involved in capsaicinoid synthesis, the expression levels of 10 genes showed a positive correlation with the pungent intensity, and it was found that the higher the expression level of these genes, the stronger the pungent taste. Therefore, it was clarified that in shishito peppers, the activation of these 10 genes increases the amount of capsaicinoids synthesized and enhances the pungent taste.

There have been many studies investigating how much the pungent intensity (capsaicinoid content) of peppers changes depending on the cultivation conditions, but few studies have investigated gene expression. In this study, the pungent fluctuation phenomenon of chili pepper was investigated at the gene expression level. The group clarified the relationship between the two by using a unique experimental method of simultaneously investigating pungent intensity and gene expression by using the placenta and septum of shishito in two equal parts.

In addition to the results of this research, this novel method can also considered to be important outcome for investigating the pungent fluctuation phenomenon in the future. Associate Professor Matsushima hopes to utilize the knowledge and information on the expression level of genes that have been found to be significantly involved in pungent fluctuations for future pungency breeding of chili peppers. It was revealed in this study that the pungent intensity of pepper and the expression level of multiple genes involved in capsaicinoid synthesis are closely related. Based on this result, if the expression level of these genes can be suppressed, it may be possible to grow vegetable varieties that are less likely to fluctuate in pungency. They are aiming for a variety of shishito that does not produce irregularly of spicy fruits, while retaining the unique flavor, which is different from the peppers that are not spicy at all. Therefore, the results of this research will be applied to pepper breeding, and the ultimate goal is to establish breeding technology for these genes and their functions.

###

Acknowledgement The authors thank Matsushima Sara for providing inspiration for the present research by her independent research.

Media Contact
Hitomi Thompson
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s00438-021-01763-4

Tags: Agricultural Production/EconomicsAgricultureEcology/EnvironmentFood/Food ScienceGenesGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

November 5, 2025
blank

Quantum-Boosted Transfer Learning for Underwater Species Classification

November 5, 2025

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

November 5, 2025

Unveiling Europe’s Key Players in Regenerative Agriculture

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.