• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Prototype in precision

Bioengineer by Bioengineer
April 5, 2019
in Science
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers develop high-resolution, high-sensitivity proximity capacitance imaging sensor

IMAGE

Credit: Shigetoshi Sugawa, Tohoku University

A finger print can serve as identification to access locked doors and more, but current scanners can be duped with fake or even similar fingerprints. That may change soon, thanks to a collaborative research team based in Japan.

The group has developed a new proximity capacitance imaging sensor that has such high sensitivity and resolution, a finger print scan shows more than the swirls of a fingertip – it detects the sweat pores between the ridges.

The prototype sensor was first presented in December at the 2018 IEEE International Electron Devices Meeting in San Francisco, California. A paper describing the details of the sensor was published in the Technical Digests of 2018 International Electron Devices Meeting. Last week, the authors presented new materials and results from the study at a conference organized by the Institute of Image Information and Television Engineers (ITE) in Japan.

“The most significant point of the developed sensor is its high capacitance sensitivity,” said paper author Shigetoshi Sugawa, a professor in the Graduate School of Engineering at Tohoku University.

Many touch screen phones and computer track pads use a less sensitive capacitance sensor, where the differences in electrical properties between a sensor and a conductive tool (such as a finger) allow the device to react to scrolling or double clicking. The capacitance increases when the object is closer – the double-click versus lighter scrolling.

The high sensitivity of this capacitance sensor is derived from newly introduced noise reduction technology, according to Sugawa.

The sensor chip contains pixels to detect the capacitance between the sample and detection electrodes. Each pixel has one detection electrode attached to it that’s capacitively coupled with a ground wire. These electrical signals are converted into images of the samples. Previously, the signals would pick up background noise such as thermal noise and noise due to variability of electrical components of pixels, which made for lower-quality images.

To fix this, the researchers applied reset switches to the detection electrodes and employed a voltage pulse to produce a circuit that can follow the source of noise. The reset switches allow the systems to detect noise arising at the detection electrodes. The voltage pulse alternates the two voltage levels after the reset switches are turned off, effectively cancelling out and removing noise from the system.

It’s the equivalent of removing the white and black snow from a television without signal input into a smooth, grey screen. It’s much easier to sense any deviation on a solid background.

“This development is important to the general public because it can improve the efficiency of analysis and control in the fields of electronic industry, authentication, life sciences, agriculture, and more,” Sugawa said.

Next, Sugawa and the researchers plan to optimize the sensor for specific applications, such as the non-contact inspection equipment of printed circuit boards and flat panels as well as a portable camera system with the developed sensor chip.

The research team consists of Sugawa, as well as Rihito Kuroda, an associate professor, Masahiro Yamamoto, Manabu Suzuki, graduate students both with the Tohoku University’s Graduate School of Engineering; Tetsuya Goto, an associate professor with Tohoku University’s New Industry Creation Hatchery Center; Hiroshi Hamori, president, Shinichi Murakami and Toshiro Yasuda, at OHT, Inc.

The prototype sensor was first presented in December at the 2018 IEEE International Electron Devices Meeting in San Francisco, California. A paper describing the details of the sensor was published in the Technical Digests of 2018 International Electron Devices Meeting. On March 22, the authors presented new materials and results from the study at a conference organized by the Institute of Image Information and Television Engineers (ITE) in Japan.

###

Media Contact
Rihito Kuroda
[email protected]

Original Source

https://www.tohoku.ac.jp/en/press/prototype_in_precision.html

Tags: Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

Groundbreaking Development: Researchers Unveil the First ‘Dynamic’ Soft Electrode for Brain-Computer Interfaces

HPV Integration: Advancing from Understanding Cancer Mechanisms to Clinical Breakthroughs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.