• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Protons set to power next-generation memory devices

Bioengineer by Bioengineer
July 17, 2023
in Chemistry
Reading Time: 2 mins read
0
Protons set to power next-generation memory devices
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A proton-mediated approach that produces multiple phase transitions in ferroelectric materials could help develop high-performance memory devices, such as brain-inspired, or neuromorphic, computing chips, a KAUST-led international team has found[1].

Protons set to power next-generation memory devices

Credit: © 2023 KAUST; Fei Xue.

A proton-mediated approach that produces multiple phase transitions in ferroelectric materials could help develop high-performance memory devices, such as brain-inspired, or neuromorphic, computing chips, a KAUST-led international team has found[1].

Ferroelectrics, such as indium selenide, are intrinsically polarized materials that switch polarity when placed in an electric field, which makes them attractive for creating memory technologies. In addition to requiring low operating voltages, the resulting memory devices display excellent maximum read/write endurance and write speeds, but their storage capacity is low. This is because existing methods can only trigger a few ferroelectric phases, and capturing these phases is experimentally challenging, says Xin He, who co-led the study under the guidance of Fei Xue and Xixiang Zhang.

Now, the method devised by the team relies on the protonation of indium selenide to generate a multitude of ferroelectric phases. The researchers incorporated the ferroelectric material in a transistor consisting of a silicon-supported stacked heterostructure for evaluation.

They deposited a multilayered indium selenide film on the heterostructure, which comprised an aluminum oxide insulating sheet sandwiched between a platinum layer at the bottom and porous silica at the top. While the platinum layer served as electrodes for the applied voltage, the porous silica acted as an electrolyte and supplied protons to the ferroelectric film.

The researchers gradually injected or removed protons from the ferroelectric film by changing the applied voltage. This reversibly produced several ferroelectric phases with various degrees of protonation, which is crucial for implementing multilevel memory devices with substantial storage capacity.

Higher positive applied voltages boosted protonation, whereas negative voltages of higher amplitudes depleted protonation levels to a greater extent.

Protonation levels also varied depending on the proximity of the film layer to silica. They reached maximum values in the bottom layer, which was in contact with silica, and decreased in stages to achieve minimum amounts in the top layer.

Unexpectedly, the proton-induced ferroelectric phases returned to their initial state when the applied voltage was turned off. “We observed this unusual phenomenon because protons diffused out of the material and into the silica,” Xue explains.

By manufacturing a film that displayed a smooth and continuous interface with silica, the team obtained a high proton-injection efficiency device that operates below 0.4 volts, which is key for developing low-power memory devices. “Our biggest challenge was to reduce the operating voltage, but we realized that the proton-injection efficiency over the interface governed operating voltages and could be tuned accordingly,” Xue says.

“We are committed to developing ferroelectric neuromorphic computing chips that consume less energy and operate faster,” Xue says.



Journal

Science Advances

DOI

10.1126/sciadv.adg4561

Article Title

Proton-mediated reversible switching of metastable ferroelectric phases with low operation voltages

Article Publication Date

24-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Nanoworld Breakthrough: Heat Transfer Rates Surpass Expectations

Nanoworld Breakthrough: Heat Transfer Rates Surpass Expectations

October 23, 2025
blank

Researchers Break Key Scaling Barriers in Photonic AI with Innovative Deep Photonic Neural Network Chip

October 23, 2025

When Metamaterials Embrace Magic Cubes: Geometric Elegance “Constructs” Electromagnetic Wonders

October 23, 2025

Breakthrough: Waveguide-Integrated Superconducting Nanowire Single-Photon Detectors Achieve Over 99% Efficiency!

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    165 shares
    Share 66 Tweet 41
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Internet Use and Loneliness in China’s Seniors

High-Fat Winter Snacks Could Mislead the Body Into Gaining Weight

Cellarity Unveils New Framework for Discovering Cell State-Correcting Medicines in Science

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.