• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Proton beam power boosted with pulsed lasers, promising better proton therapies

Bioengineer by Bioengineer
April 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan – Beams of charged particles such as protons are used to answer fundamental physics questions and have practical applications in both cancer therapy and fusion power. One way of generating the charged particles for such beams was by directing powerful lasers at metal foils thinner than a human hair. The metal then releases charged particles. Current processes use foils 100 times thinner than a human hair–in this way high-intensity laser light can drive the electrons it hits to near light speeds.

Researchers have thus far used only very short bursts of laser light, each lasting a mere picosecond. When using the pulses, they try to minimize the amount of background light to create sharp (i.e., high contrast) pulses of light. The aim is to increase the energy of the charged particles and achieve beams in which the particles all have very similar energies. Higher energy beams in which the energy of each particle is known exactly are more useful, both in research and for medicine. Although pulsed lasers have shown promise in this area, until recently, the effect of sharp laser pulses longer than one picosecond were unknown.

Now, a Japan-based research team centered at Osaka University has carried out a more detailed study on the use of such laser pulses. They used sharp, ultra-short pulses of laser light from the Laser for Fast Ignition Experiments (LFEX) at Osaka University. LFEX is one of the world's most powerful lasers. The team's study was recently published in the Nature journal Scientific Reports.

LFEX has four extremely powerful laser beams. The researchers used mirrors to focus the laser light down to a point the size of a dust particle. This light was directed at an ultra-thin piece of aluminum foil to generate a cloud of charged particles, referred to as a plasma. Each laser beam is 1018 times more intense than sunlight. Generally such intense power can only be generated for a very short period of time; a challenge underlying why sharp laser pulses longer than one picosecond had not yet been studied.

"By carefully timing the firing of the four beams it was possible for us to effectively fire each in sequence to generate longer pulses that otherwise had the same sharp features as single pulses," study coauthor Hiroshi Azechi says.

The results challenge conventional theoretical models. The researchers found that with their pulsed light, 100 times less intense laser light than previously thought is necessary to produce high-energy charged particles.

"Using multiple pulses to create one longer pulse heats up the electron plasma significantly, which is likely what causes the charged particles to achieve a higher energy at a lower laser intensity," first author Akifumi Yogo says.

Understanding how to create more efficient charged particle beams is a potential key to developing a new generation of particle beams that could advance knowledge of physics and provide better precision tools in the medical field.

###

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Wnt Gene Family Discovered in Forest Musk Deer

December 22, 2025

Comparing Urinary Mycotoxins and Risks Across China

December 22, 2025

Metabolic Effects of Prolonged CPAP in Preemies

December 22, 2025

Transforming Lab Reports: AI Takes the Lead

December 22, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wnt Gene Family Discovered in Forest Musk Deer

Comparing Urinary Mycotoxins and Risks Across China

Metabolic Effects of Prolonged CPAP in Preemies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.