• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Proton beam power boosted with pulsed lasers, promising better proton therapies

Bioengineer by Bioengineer
April 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan – Beams of charged particles such as protons are used to answer fundamental physics questions and have practical applications in both cancer therapy and fusion power. One way of generating the charged particles for such beams was by directing powerful lasers at metal foils thinner than a human hair. The metal then releases charged particles. Current processes use foils 100 times thinner than a human hair–in this way high-intensity laser light can drive the electrons it hits to near light speeds.

Researchers have thus far used only very short bursts of laser light, each lasting a mere picosecond. When using the pulses, they try to minimize the amount of background light to create sharp (i.e., high contrast) pulses of light. The aim is to increase the energy of the charged particles and achieve beams in which the particles all have very similar energies. Higher energy beams in which the energy of each particle is known exactly are more useful, both in research and for medicine. Although pulsed lasers have shown promise in this area, until recently, the effect of sharp laser pulses longer than one picosecond were unknown.

Now, a Japan-based research team centered at Osaka University has carried out a more detailed study on the use of such laser pulses. They used sharp, ultra-short pulses of laser light from the Laser for Fast Ignition Experiments (LFEX) at Osaka University. LFEX is one of the world's most powerful lasers. The team's study was recently published in the Nature journal Scientific Reports.

LFEX has four extremely powerful laser beams. The researchers used mirrors to focus the laser light down to a point the size of a dust particle. This light was directed at an ultra-thin piece of aluminum foil to generate a cloud of charged particles, referred to as a plasma. Each laser beam is 1018 times more intense than sunlight. Generally such intense power can only be generated for a very short period of time; a challenge underlying why sharp laser pulses longer than one picosecond had not yet been studied.

"By carefully timing the firing of the four beams it was possible for us to effectively fire each in sequence to generate longer pulses that otherwise had the same sharp features as single pulses," study coauthor Hiroshi Azechi says.

The results challenge conventional theoretical models. The researchers found that with their pulsed light, 100 times less intense laser light than previously thought is necessary to produce high-energy charged particles.

"Using multiple pulses to create one longer pulse heats up the electron plasma significantly, which is likely what causes the charged particles to achieve a higher energy at a lower laser intensity," first author Akifumi Yogo says.

Understanding how to create more efficient charged particle beams is a potential key to developing a new generation of particle beams that could advance knowledge of physics and provide better precision tools in the medical field.

###

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Boosting Xanthan Gum Production with Essential Oil By-products

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025
Groundwater Pesticide Contamination: Challenges and Solutions

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

September 13, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.