• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biochemistry

Proteins ‘ring like bells’

Bioengineer by Bioengineer
June 4, 2014
in Biochemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As far back as 1948, Erwin Schrödinger—the inventor of modern quantum mechanics—published the book “What is life?”

Proteins ‘ring like bells’

Dr David Turton, the ultrafast laser expert who carried out the laser experiments. Photo Credit: Image courtesy of University of Glasgow

In it, he suggested that quantum mechanics and coherent ringing might be at the basis of all biochemical reactions. At the time, this idea never found wide acceptance because it was generally assumed that vibrations in protein molecules would be too rapidly damped.

Now, scientists at the University of Glasgow have proven he was on the right track after all.

Using modern laser spectroscopy, the scientists have been able to measure the vibrational spectrum of the enzyme lysozyme, a protein that fights off bacteria. They discovered that this enzyme rings like a bell with a frequency of a few terahertz or a million-million hertz. Most remarkably, the ringing involves the entire protein, meaning the ringing motion could be responsible for the transfer of energy across proteins.

The experiments show that the ringing motion lasts for only a picosecond or one millionth of a millionth of a second. Biochemical reactions take place on a picosecond timescale and the scientists believe that evolution has optimised enzymes to ring for just the right amount of time. Any shorter, and biochemical reactions would become inefficient as energy is drained from the system too quickly. Any longer and the enzyme would simple oscillate forever: react, unreact, react, unreact, etc. The picosecond ringing time is just perfect for the most efficient reaction.

These tiny motions enable proteins to morph quickly so they can readily bind with other molecules, a process that is necessary for life to perform critical biological functions like absorbing oxygen and repairing cells.

The findings have been published in Nature Communications.

Klaas Wynne, Chair in Chemical Physics at the University of Glasgow said: “This research shows us that proteins have mechanical properties that are highly unexpected and geared towards maximising efficiency. Future work will show whether these mechanical properties can be used to understand the function of complex living systems.”

Story Source:

The above story is based on materials provided by University of Glasgow.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

December 9, 2020

Protein aggregates save cells during aging

May 8, 2015

Revolutionary method of making RNAs

May 4, 2015

DNA ‘cage’ could improve nanopore technology

February 11, 2015
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bispecific Affitoxin Targets HPV, Enhances Cervical Cancer Therapy

Oxaloacetate Sensing Boosts Innate Flu Defense

Impact of Certified Lactation Consultants in US Clinics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.