• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Protein transport channel offers new target for thwarting pathogen

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Luiz Bermudez, a professor in OSU’s College of Veterinary Medicine Credit: Karl Maasdam

CORVALLIS, Ore. – A bacterium that attacks people suffering from chronic lung disease and compromised immune systems could be halted by disrupting the distribution channels the organism uses to access the nutrient-rich cytoplasm of its host cell.

The findings by researchers in Oregon State University’s colleges of science and veterinary medicine are important because they suggest a new therapeutic target for one of the leading causes of bacterial infection in patients with HIV/AIDS.

The bacterium is Mycobacterium avium, the most common pathogen among non-tuberculosis mycobacteria. Highly opportunistic, M. avium invades and proliferates within a variety of human cells; it resides in a cytoplasmic vacuole and survives by remodeling its vacuolar compartment and resisting its host’s antimicrobial mechanisms.

“Most bacteria that grow in phagocytic cells export their effector proteins that impair or redirect macrophage function by using a needle-like apparatus that perforates the vacuole membrane and delivers virulence-associated molecules to the cytoplasm,” said co-corresponding author Luiz Bermudez of OSU’s College of Veterinary Medicine. “But mycobacteria don’t have that, so the question has always been, how do all these proteins get exported, how do they cross the vacuole membrane?”

They likely do so because proteins of the pathogen dock to transport proteins of the phagosome in the host cell in a way that allows for the efficient secretion of effector proteins. Co-corresponding author Lia Danelishvili, also of the College of Veterinary Medicine, identified voltage-dependent anion channels as a possible means of exporting those proteins.

“A VDAC is very small, but it can become larger if several VDAC proteins get together through polymerization,” Bermudez said. “We found that yes, mycobacteria use surface proteins to bind to the VDAC. But although we tried to see if the proteins of the mycobacterium were exported by the VDAC, we couldn’t show that. However, we did show that another component of the cell wall of the mycobacterium, lipids, are exported by that mechanism.”

Next up is determining what specific physical and chemical interactions occur to make effector protein transport possible.

“The idea is to find out the mechanism bacteria use to secrete proteins produced in the cells that have important functions in controlling the phagocytic activity that’s supposed to kill them,” Bermudez said.

###

Findings were recently published in Scientific Reports.

Media Contact

Luiz Bermudez
[email protected]
541-737-6532
@oregonstatenews

http://oregonstate.edu/

http://bit.ly/2gkJeKm.

Related Journal Article

http://dx.doi.org/10.1038/s41598-017-06700-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

September 10, 2025
blank

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

September 10, 2025

Misconceptions Prevent Certain Cancer Patients from Accessing Hormone Therapy Benefits

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.