• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Protein insights to help find heart disease cure

Bioengineer by Bioengineer
January 23, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Research led by The Australian National University (ANU) has uncovered new insights into how the human genome gets through the daily grind with the help of RNA-binding proteins, in a discovery which could ultimately lead to a cure for heart disease.

Lead researcher Professor Thomas Preiss from The John Curtin School of Medical Research at ANU said the finding opens new avenues of research into RNAs – short-lived copies of the genetic information stored in DNA.

"In studying how RNA-protein interactions govern genome function in the heart, we saw potential for both the generation of knowledge and ultimately the development of new therapy," Professor Preiss said.

"So we endeavoured to establish a collection of RNA-binding proteins that are active in heart muscle cells." Heart disease is a leading cause of death in Australia with an average one death due to heart disease in Australia every 27 minutes.

All cellular life uses DNA to store genetic information and to pass it on through the generations. But the information is useless unless it is copied into the chemically similar but more versatile nucleic acid molecules called RNA.

RNA carries the code for making proteins, the bricks and mortar of life, but it also has noncoding regulatory roles that are particularly important in architecturally complex beings such as humans.

"In recent years we have even come to think of the genome as an RNA-making machine," Professor Preiss said.

"Much research is rightfully directed at understanding RNA. But RNA does not act alone, rather it functions in coordination with RNA-binding proteins."

The research team identified over one thousand such proteins by using innovative proteomic methods, developed by Professor Matthias Hentze and colleagues from EMBL, which is Europe's flagship laboratory for the life sciences.

The new methods allowed them to catch proteins in the act of binding to RNA, and also identify what part of the protein was in contact with the nucleic acid. This led them to identify new types of protein surfaces capable of interacting with RNA.

The process enabled the researchers to identify hundreds of proteins that were not known to bind to RNA.

"Many of these proteins already have a well understood day job, for example in cellular metabolism, and yet here they were interacting with RNA. We are now trying to understand why they engage in this moonlighting activity," Professor Hentze said.

Research team member Dr Yalin Liao, also from The John Curtin School of Medical Research, said the project revealed that dozens of metabolic enzymes bound RNA.

"We started with this project thinking that we will find new proteins that help the RNA to function. But we are now also considering that in some cases there could be RNAs that help the protein to function," Dr Liao said.

"Our compendium of RNA-binding proteins in the heart will provide many new angles for research and could ultimately lead to a cure for heart disease."

###

The study was supported by grants from the National Health and Medical Research Council of Australia and the Science and Industry Endowment Fund.

The study was published in the journal Cell Reports: http://dx.doi.org/10.1016/j.celrep.2016.06.084

Media Contact

Madeleine Nicol
[email protected]
61-261-252-577
@ANUmedia

http://www.anu.edu.au/media

Share12Tweet7Share2ShareShareShare1

Related Posts

How PRMT5-Mediated ACSL4 Methylation Inhibits Ferroptosis in Renal Carcinoma

September 22, 2025

Dana-Farber Unveils Innovative Diagnostic Tool Transforming Acute Leukemia Detection

September 22, 2025

Tracking Perinatal Anxiety and Depression: Insights from a Major Urban Medical Center

September 22, 2025

Introducing BAMBI: The Innovative Medical Device from Politecnico di Milano Aiming to Halt Postnatal Hemorrhages

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How PRMT5-Mediated ACSL4 Methylation Inhibits Ferroptosis in Renal Carcinoma

Dana-Farber Unveils Innovative Diagnostic Tool Transforming Acute Leukemia Detection

Tracking Perinatal Anxiety and Depression: Insights from a Major Urban Medical Center

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.