• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Protein complex prevents genome instability

Bioengineer by Bioengineer
February 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Miki Shinohara

An international collaboration between Osaka University and the Friedrich Miescher Institute for Biomedical Research (FMI) in Switzerland is investigating the repair process of a serious form of DNA damage that can lead to instability of genetic material and tumor formation. The researchers are studying the roles of groups of proteins that control the repair of double-stranded breaks (DSBs) in DNA that occur from internal or external sources, such as UV irradiation.

The yeast Saccharomyces cerevisiae, also known as baker's or brewer's yeast, is being used by the team as a model organism to study the repair protein functions. This yeast is an ideal model because it shares many similarities with many similarities with plants and animals, all of which are made up of cells with nuclei, yet its genetics are sufficiently simple to allow it to be easily manipulated in the lab. Yeast is therefore an excellent tool to study the different types of genomic mutations that characterize human cancers.

The researchers found that the MRX complex of three yeast proteins plays a vital structural role during early DSB repair and when overcoming delays in the replication of partially separated DNA double helices [1]. "MRX is introduced to the DNA damage site or stalled replication fork through its interaction with yeast replication protein A," says Susan M. Gasser of FMI. "We used super-resolution microscopy to show that this interaction behaves like a linchpin to stabilize broken ends of DNA."

Crucially, their research revealed that this structural role did not require the presence of another protein, cohesin, as was commonly thought.

The Xrs2 member of the MRX complex interacts with other proteins to ensure that the correct molecules are present at repair sites of DNA damage. Strong similarities between regions of yeast proteins and related human proteins are a sure sign that the sequences are functionally important enough not to have changed during evolution. Nbs1, the human equivalent of Xrs2, shares a similar role, and mutations at one end of this protein cause an inherited disease with a high risk of cancer and immunodeficiency.

In a related study, the team found that mutations in the part of Xrs2 equivalent to the disease-causing region of Nbs1 caused the build-up of a protein, Ku, which controls the structure of chromosome ends [2]. "This reduced the precision of the joining of damaged DNA ends, akin to that seen in the human disease," explains Miki Shinohara of the Osaka University Institute for Protein Research, Department of Integrated Protein Functions. "The same part of Xrs2 was also needed to sustain high activity levels of a key enzyme involved in the DNA damage response."

These findings offer an insight into how cells can develop genomic instabilities, leaving them susceptible to cancer.

###

References:

1. Seeber, A., Hegnauer, A. M., Hustedt, N., Deshpande, I., Poli, J., Eglinger, J., Pasero, P., Gut, H., Shinohara, M., Hopfner, K,-P., Shimada, K. & Gasser S. M. RPA mediates recruitment of MRX to forks and double-strand breaks to hold sister chromatids together. Molecular Cell 64, 951-966 (2016). DOI: 10.1016/j.molcel.2016.10.032

2. Iwasaki, D., Hayashihara, K., Shima, H., Higashide, M., Terasawa, M., Gasser, S. M. & Shinohara M. The MRX complex ensures NHEJ fidelity through multiple pathways including Xrs2-FHA-dependent Tel1 activation. PLOS Genetics 12, e1005942 (2016). DOI:10.1371/journal.pgen.1005942

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Share12Tweet7Share2ShareShareShare1

Related Posts

New Insights Suggest ALS May Be an Autoimmune Disease

New Insights Suggest ALS May Be an Autoimmune Disease

October 1, 2025
Jurassic Reptile Discovery Challenges Distinction Between Snakes and Lizards

Jurassic Reptile Discovery Challenges Distinction Between Snakes and Lizards

October 1, 2025

Light Quality Impacts Growth of Populus Schneideri

October 1, 2025

Metabolic Response to Hypoxia in Altitude-Dwelling Rodents

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses Influence Co-Parenting in Early Fatherhood

Promising New Herpes Virus–Based Vaccine Shows Potential to Cure Cancer Without Side Effects in the Future

Military Pilot’s Successful Return After Lingual Thyroid Evaluation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.