• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Protecting biocatalysts from oxygen

Bioengineer by Bioengineer
January 11, 2023
in Biology
Reading Time: 2 mins read
0
Group of authors
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the energy transition to succeed, we require environmentally friendly energy carriers. Hydrogen could be one such source if it could be produced on a large scale in a carbon-neutral way. Researchers are relying on enzymes that occur naturally in certain algae and bacteria, to name just a few. “Due to their high conversion rates, they serve as a biological blueprint for the design of future hydrogen catalysts,” explains lead author Andreas Rutz. But their unique active site, known as the H-cluster, degrades on contact with oxygen. “This is the greatest hurdle in hydrogen research,” says Rutz.

Group of authors

Credit: RUB. Marquard

For the energy transition to succeed, we require environmentally friendly energy carriers. Hydrogen could be one such source if it could be produced on a large scale in a carbon-neutral way. Researchers are relying on enzymes that occur naturally in certain algae and bacteria, to name just a few. “Due to their high conversion rates, they serve as a biological blueprint for the design of future hydrogen catalysts,” explains lead author Andreas Rutz. But their unique active site, known as the H-cluster, degrades on contact with oxygen. “This is the greatest hurdle in hydrogen research,” says Rutz.

Oxygen resistance increases considerably

The recently discovered [FeFe] hydrogenase called CbA5H is the only known enzyme of its class that can protect itself from oxygen by a molecular protection mechanism. However, a fraction of the hydrogenase is also destroyed in the process. To remedy this problem, the researchers specifically exchanged a building block of the enzyme. This genetic modification meant they could significantly increase the oxygen resistance of the hydrogenase.

The teams used site-directed mutagenesis in combination with electrochemistry, infrared spectroscopy and molecular dynamics simulations to better understand the kinetics of the transformation at the atomic level. “We intend to use our findings to understand how local modifications of protein structure can significantly influence protein dynamics and how they can effectively control the reactivity of inorganic centres,” explain Lars Schäfer and Ulf-Peter Apfel.



Journal

ACS Catalysis

DOI

10.1021/acscatal.2c04031

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Increasing the O2 resistance of the [FeFe]-hydrogenase CbA5H through enhanced protein flexibility

Article Publication Date

28-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting Lipid Metabolism to Enhance Antitumor Immunity

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Uncovering Gaps in Rehab for Hospitalized Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.