• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Protect the skin, build barriers: Old acquaintance in a new role

Bioengineer by Bioengineer
November 8, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The epidermis, the outermost part of our skin, is our most important protection towards the outside world. Our ability to survive depends on the epidermal barrier being intact. To keep the barrier functioning, every single cell needs to know what to do. That is especially difficult in the epidermis, which constantly renews itself. The process behind it is little understood so far.

Of vital importance for building the barrier are especially tight connections between the cells. The so called tight junctions close the space between cells and control the transportation of molecules. The plan to form tight junctions can be found in every layer of the epidermis, nevertheless they are only developed in the outer layer. "Why it is like that was a mystery so far," says Matthias Rübsam first author of the study. "Using new microscopy techniques, we could show that the receptor of a well known growth factor, EGF, plays an important role in tight junction barrier formation in the epidermis. Actually, EGF is responsible for the cell division and so far was only described in the lower layers of the epidermis."

Another aspect has something to do with a more recent field of cell biology, the mechanobiology. "Similar to railway coupling, cells can feel via connections among each other whether they are under pressure or under tension," the scientist explains. "The coupling triggers a signal which regulates the receptor. The activity of the coupling mechanism, the receptor and of the barrier molecules must always be at equilibrium." Disruption of this balance could cause known skin diseases like neurodermatitis or psoriasis. The new findings that coupling mechanisms and the receptor are important for keeping the balance may explain why common anti-tumor treatments targeting the receptor have heavy side effects for the skin. With this knowledge consequences of tumor therapies could be improved.

###

This study using mice with defects in the skin barrier was conducted in close collaboration with researchers of the Max-Planck-Institute for Biology of Ageing (Sara Wickström), and universities in Yale (Aaron Mertz) and Tokyo (Masayuki Amagai, Akiharu Kubo). The results have been published in Nature Communications.

Original publication:

E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and Tight Junction positioning Matthias Rübsam, Aaron F. Mertz, Akiharu Kubo, Susanna Marg, Christian Jüngst, Gladiola Goranci-Buzhala, Astrid C. Schauss, Valerie Horsley, Eric R. Dufresne, Markus Moser, Wolfgang Ziegler, Masayuki Amagai, Sara A. Wickström, and Carien M. Niessen Nature Communications DOI: 10.1038/s41467-017-01170-7

Media Contact

Prof. Dr. Carien Niessen
[email protected]
49-221-478-89512
@UniCologne

http://www.uni-koeln.de

http://dx.doi.org/10.1038/s41467-017-01170-7

Share13Tweet7Share2ShareShareShare1

Related Posts

Transformers Meet State-Space Models: A Recurring Revolution

Transformers Meet State-Space Models: A Recurring Revolution

October 13, 2025

Hyaluronan Focus in Septic Shock and Pancreatitis

October 13, 2025

Skin Symptoms Could Signal Early Mental Health Risks, Study Finds

October 12, 2025

Exploring Breastfeeding Equity in Ethiopian Infants

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1226 shares
    Share 490 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transformers Meet State-Space Models: A Recurring Revolution

Hyaluronan Focus in Septic Shock and Pancreatitis

Skin Symptoms Could Signal Early Mental Health Risks, Study Finds

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.