• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 19, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Promising new method for producing tiny liquid capsules

Bioengineer by Bioengineer
June 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Solid capsules with a liquid core are ideal for storage and delivery of oil-based materials in skin care or for use as bioreactors

IMAGE

Credit: Nam-Trung Nguyen

WASHINGTON, June 2, 2020 — Microcapsules for the storage and delivery of substances are tiny versions of the type of capsule used for fish oil or other liquid supplements, such as vitamin D. A new method for synthesizing microcapsules, reported in AIP Advances, by AIP Publishing, creates microcapsules with a liquid core that are ideal for the storage and delivery of oil-based materials in skin care products. They also show promise in some applications as tiny bioreactors.

Current production methods for microcapsules involve the use of emulsions, but these often require surfactants to ensure stability of the interface between the inner liquid and the one used to create the outer shell. Since surfactants can adversely affect the liquids involved, other approaches have been tried, including spraying liquids in a strong electric field.

One technique for creating microcapsules that works reasonably well involves the use of tiny channels. This microfluidics approach requires the complete wetting of the tiny channels with the liquids used to make the droplets. This, again, requires surfactants, complicating the fabrication process.

In this new method, a surfactant-free microfluidics process is used. The technique can produce up to 100 microcapsules per second. The output could be even larger at higher flow rates, according to the authors.

To produce the microcapsules, the investigators created a device by etching tiny channels into hard plastic. Two different liquids, an oily one for the core and a different one for the shell, were injected into the channels.

As the liquids are pumped through, droplets form when the immiscible liquids come into contact. The droplets are kept separate from one another with a third liquid and, finally, irradiated with ultraviolet light. This final step causes the outer shell to polymerize and solidify, trapping the liquid core.

The investigators analyzed and optimized the system by trying different flow rates and other operating conditions. The final droplets were examined and allowed to dry overnight at a high temperature, but no evaporation or shrinkage was observed, showing that the microcapsules can be safely stored without rupturing. This makes them ideal for pharmaceutical or skin care applications.

“Another application for microcapsules would be the polymerase chain reaction, PCR,” said co-author Nam-Trung Nguyen, of Griffith University in Australia.

Keeping the PCR samples in these tiny capsules allows for implementation of a technique known as digital PCR.

“Each microcapsule could serve as a single microreactor, eliminating the need for well plates,” said Nguyen.

###

The article, “Surfactant-free, UV-curable core-shell microcapsules in a hydrophilic PDMS microfluidic device,” is authored by Adrian J.T. Teo, Fariba Malekpour-galogahi, Kamalalayam Rajan Sreejith, Takayuki Takei and Nam-Trung Nguyen. The article will appear in AIP Advances on June 2, 2020 (DOI: 10.1063/5.0004736). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0004736.

ABOUT THE JOURNAL

AIP Advances is an open access journal publishing in all areas of physical sciences–applied, theoretical, and experimental. The inclusive scope of AIP Advances makes it an essential outlet for scientists across the physical sciences. See https://aip.scitation.org/journal/adv.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0004736

Tags: BiologyChemistry/Physics/Materials SciencesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Knowledge Graphs with Large Language Models

Intussusceptive Angiogenesis: Connecting Lab Insights to Reality

Novel Pacemaker Promises Lifelong Energy in Porcine Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.