• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery

Bioengineer by Bioengineer
June 18, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing costs

IMAGE

Credit: Korea Institute of Science and Technology(KIST)

Various automobile companies are preparing to shift from internal combustion (IC) engine vehicles to electric vehicles (EVs). However, due to higher cost, EVs are not as easily accessible to consumers; hence, several governments are subsidizing EVs to promote sales. For EV costs to compete with those of IC engine vehicles, their batteries, which account for about 30% of their cost, must be more economical than that of IC-based vehicles.

The Korea Institute of Science and Technology (KIST) has announced that Dr. Sang-Ok Kim’s team at the Center for Energy Storage Research had developed a novel, high-performance, economical anode material for use in sodium-ion secondary batteries, which are more cost-effective than lithium-ion batteries. This novel material can store 1.5 times more electricity than the graphite anode used in commercial lithium-ion batteries and its performance does not degrade even after 200 cycles at very fast charging/discharging rates of 10 A/g.

Sodium is over 500 times more abundant in the Earth’s crust than lithium; hence, sodium-ion batteries have drawn considerable attention as the next-generation secondary battery because it is 40% cheaper than lithium-ion batteries. However, compared to lithium ions, sodium ions are larger and, thus, cannot be stored as stably in graphite and silicon, which are widely used as anodes in such batteries. Hence, the development of a novel, high-capacity anode material is necessitated.

The KIST research team used molybdenum disulfide (MoS2), a metal sulfide that has garnered interest as a candidate for large-capacity anode materials. MoS2 can store a large amount of electricity, but cannot be used because of its high electrical resistance and structural instability that occur during battery operation. However, Dr. Sang-Ok Kim’s team overcame this problem by creating a ceramic nano-coating layer using silicone oil, which is a low-cost, eco-friendly material. Through the simple process of mixing the MoS2 *precursor with silicone oil and heat-treating the mixture, they could produce a stable heterostructure with low resistance and enhanced stability.

*precursor : A material in a stage before becoming a specific material in a metabolism or reaction.

**Heterostructure: A structure created by combining two or more materials

Furthermore, the evaluation of electrochemical properties indicated that this material could stably store at least twice as much electricity (?600 mAh/g) as the MoS2 material without coating and could maintain this capacity even after 200 rapid charge/discharge cycles. This excellent performance was achieved by the formation of the ceramic nano-coating layer with high electric storage capacity, which imparts high conductivity and rigidity to the MoS2 surface, resulting in low electrical resistance of the material and high structural stability.

Dr. Sang-Ok Kim, stated “We could successfully solve the high resistance and structural instability problems of MoS2 through the nano-coating surface stabilization technology. As a result, we could develop a sodium-ion battery that can stably store a large amount of electricity. Our method uses cost-effective, eco-friendly materials and, if adapted for the large-scale manufacturing of anode materials, can lower production costs and, hence, boost the commercialization of sodium-ion batteries for large-capacity power storage devices.”

###

This study was supported by a KIST’s institutional R&D project and the Korea Research Foundation’s Outstanding New Researcher Support Project funded by the Ministry of Science and ICT (MSIT) The results of this study were published in the latest issue of the international journal in nanotechnology ‘ACS Nano‘ (IF: 14.588, top 5.260% in JCR).

Media Contact
Do-Hyun Kim
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.1c00797

Tags: Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Enhances Personalized Cancer Treatment Recommendations

Stress Hyperglycemic Ratio Links to Mortality in Diabetic Heart Failure

DOD Awards Research Grant to MMRI Scientist Developing Advanced Monitoring Techniques for Transplant Health in Wounded Veterans

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.