• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Programmed Immune Stem Cells

Bioengineer by Bioengineer
January 4, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The findings could help in the development of strategies to rejuvenate patients’ exhausted immune responses.The techniques the groups employed involved using known factors to revert mature immune T cells into induced pluripotent stem cells (iPSCs), which can differentiate into virtually any of the body’s different cell types. The researchers then expanded these iPSCs and later coaxed them to redifferentiate back into T cells. Importantly, the newly made T cells were “rejuvenated” with increased growth potential and lifespan, while retaining their original ability to target cancer and HIV-infected cells. These findings suggest that manipulating T cells using iPSC techniques could be useful for future development of more effective immune therapies.

In one study, investigators used T cells from an HIV-infected patient. The redifferentiated cells they generated had an unlimited lifespan and contained long telomeres, or caps, on the ends of their chromosomes, which protect cells from aging. This is significant because normal aging of T cells limits their expansion, making them inefficient as therapies. “The system we established provides ‘young and active’ T cells for adoptive immunotherapy against viral infection or cancers,” says senior author Dr. Hiromitsu Nakauchi, of the University of Tokyo.

The other research team focused on T cells from a patient with malignant melanoma. The redifferentiated cells they created recognized the protein MART-1, which is commonly expressed on melanoma tumors. “The next step we are going to do is examine whether these regenerated T cells can selectively kill tumor cells but not other healthy tissues. If such cells are developed, these cells might be directly applied to patients,” says senior author Dr. Hiroshi Kawamoto, of the RIKEN Research Center for Allergy and Immunology. “This could be realized in the not-so-distant future.”

Source: Nishimura et al., Cell Stem Cell    |  Science Daily

Tags: BioengineeringStem Cell
Share12Tweet8Share2ShareShareShare2

Related Posts

Gut-Brain Link: How NEC Affects Newborn Brains

Gut-Brain Link: How NEC Affects Newborn Brains

August 22, 2025
blank

Microscopy Reveals Details of Anterior Human Eye

August 22, 2025

Signaling Pathways Drive Cisplatin Resistance via SOX2

August 22, 2025

Study Finds No Link Between Animal Protein Consumption and Increased Mortality Risk

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut-Brain Link: How NEC Affects Newborn Brains

Microscopy Reveals Details of Anterior Human Eye

Signaling Pathways Drive Cisplatin Resistance via SOX2

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.