• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Production of key diabetes cells can be improved

Bioengineer by Bioengineer
September 21, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Beta cells release insulin in your blood, but when you suffer from Type 1 diabetes, you hardly have any of them left in your body. This is because the immune system attacks the beta cells.

The role of insulin is to reduce and regulate the blood sugar level when it is too high. People with diabetes do not have this function, and therefore need insulin injections in order to regulate their blood sugar levels.

Researchers are trying to produce beta cells artificially with the purpose of transplanting them to diabetic patients to regulate their blood sugar. A new research result from the University of Copenhagen and Novo Nordisk recently published in the scientific journal Stem Cell Reports provides a better understanding of how to improve the production of beta cells from human embryonic stem cells.

"At the moment, we can make stem cells develop into something that resembles proper beta cells. Our research shows that the current method produces cells that resemble alpha cells a little too much. However, the research has given us a better understanding of the steps stem cells go through when they develop into beta cells. In fact, we also show that the cells can develop along different paths, and still end up making the same type of beta cells," says Anne Grapin-Botton, professor at the Novo Nordisk Foundation Center for Stem Cell Biology, DanStem.

The researchers have based their work on human pluripotent stem cells, which are able to evolve into any cell type in the body. Using known methods, the scientists analysed about 600 different cells on their path to beta cell differentiation and individually examined the cells to find out how much they molecularly resemble the beta cells.

In doing so, the researchers acquired important new knowledge about the way in which the cells develop and which genes play a role in this development. Notably, it was important that the genes NXK6.1 and MNX1 were activated for the cells to become beta cells in the end.

"This study takes an in-depth look at the molecular mechanisms on the cell level. We are not looking at what the average cells do, as other scientists have previously done – we are looking at all the individual cells. We are doing so in the hope that we can prevent cells from developing in the 'wrong direction'. This work sheds light on the paths which the cells take in their development and how we human beings develop in the womb," says Anne Grapin-Botton.

Alpha cells have the opposite function of beta cells. They must ensure that the body secretes the peptide hormone glucagon into the blood when the blood sugar level is too low. While the alpha cells cause the blood sugar level to rise, the beta cells ensure that it falls. And when the produced cells resemble the alpha cells too much, they are not optimal for treating diabetics.

"The cells definitely start the process of becoming either alpha or beta cells, but they don't complete it. Here, we need to carry on researching to learn even more about how we can optimise the last step in the development of beta cells," explains Anne Grapin-Botton.

The study was conducted in cooperation with project leader Christian Honoré from Novo Nordisk, and is supported by Innovation Fund Denmark, the Danish National Research Foundation and the Novo Nordisk Foundation.

###

Media Contact

Mathias Traczyk
[email protected]
459-356-5835

http://healthsciences.ku.dk/

http://healthsciences.ku.dk/news/2017/09/production-of-key-diabetes-cells-can-be-improved/

Share12Tweet7Share2ShareShareShare1

Related Posts

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025
Sheathed Flagellum Structures Explain Vibrio cholerae Motility

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025

Electrostatic Shifts Drive Exocyst Subunit Diversification

October 31, 2025

Breakthrough Study Reveals Innovative Method to Target Cell Receptors, Paving the Way for Expanded Treatment Options

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating Human Kidney Organoids for Porcine Transplants

Proteome Atlas Unveils Diabetic Retinopathy Risks

Interconnections of Conflict, Climate Change, and Public Health: A Scientific Perspective

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.