• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Process behind the organ-specific elimination of chromosomes in plants unveiled

Bioengineer by Bioengineer
June 2, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Alevtina Ruban/ IPK

Whilst we often think of somatic cells in an organism as containing the same DNA and therefore the same number of chromosomes, it is surprising, how often this is not the case. In humans, such differences in chromosome numbers, so called genetic mosaicism, often occur unintentionally and express themselves in the form of illnesses. Some plants and animals on the other hand, are known to systematically ensure that the DNA content between some of their organs differs. Whilst the phenomenon of “programmed DNA elimination” has been known since 1887, the process with which plants achieve it, had stayed elusive. Researchers from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben have now finally been able to explain the underlying mechanisms.

Within their investigation, the researchers focused on the organ-specific elimination of B chromosomes within goatgrass, Aegilops speltoides. B chromosomes are “selfish” chromosomes, which bring no apparent benefit to the organism. Goatgrass, a progenitor of our common wheat, can carry up to 8 of these supernumerary chromosomes. However, whilst B chromosomes can be found in the leaves, stem and flower of the grass, their roots are a B chromosome-free zone.

Through the detailed investigation and comparison of Ae. speltoides strains with and without B chromosomes, the researchers gained novel insights into the origins of B chromosomes. Further, their observations confirmed that the elimination of selfish chromosomes is a strictly controlled root-specific process. The elimination starts with the onset of the embryonic tissue differentiation and can eradicate up to 100% of the targeted B chromosomes. As Prof. Andreas Houben let us know: “Elimination of B chromosomes occurs due to mitotic chromosome nondisjunction. This means that the cellular transport of the B chromosomes is impaired, and as a consequence, the B chromosomes are separated from the standard chromosomes. Then, in the final step of the elimination, the DNA of B chromosomes is degraded.”

With its exceptional efficiency rate, the programmed elimination process of chromosomes has the potential of becoming a highly useful addition to the genetic toolbox. When induced artificially, it could enable the elimination of chromosomes or chromosome sets for medical or plant breeding purposes. In the meanwhile, plants continue to benefit from their process in a more down to earth way – the research suggests that the removal of the supernumerary chromosomes spares the root cells from having potentially harmful B chromosome located genes.

###

Media Contact
Dr. Andreas Houben
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-16594-x

Tags: BiochemistryBiologyCell BiologyGenes
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in COâ‚‚ Reduction

November 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.