• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Probing into the molecular requirements for antioxidant activity

Bioengineer by Bioengineer
April 21, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Free radicals are derived either from normal essential metabolic processes in the human body or from external sources such as exposure to environmental xenobiotics. A balance between free radicals and antioxidants is essential for proper physiological function. Increased production of free radicals or a decreased capacity in the body to produce antioxidants, leads to oxidative stress. The reported chemical evidence suggests that dietary antioxidants can help in disease prevention. Therefore, it is important to understand the reaction mechanisms between antioxidants and free radicals. Understanding the reaction mechanisms can help in evaluating the antioxidant activity of antioxidant compounds and also help to develop novel antioxidants. For that purpose, PCA and ANN modelling were used to explain the structure-activity relationships of the selected phenolic compounds. Two distinct mechanisms of action for flavonoids and polyphenolic acids were confirmed, i.e. breaking of free radical chain reactions by donation of a hydrogen atom to neutralise the free radical and the chelating ability of polyphenolic acids. The ANN model identified the combination of chemical features that contribute to antioxidant activity and govern different mechanisms of actions. Both models agreed that structural characteristics of phenolic compounds responsible for the high DPPH* scavenging activity include, number and position of alcohol groups on the aromatic ring, molecular size and flexibility/bulkiness and solubility. The ANN model showed that the presence of phenol groups in the phenolic acid group were particularly important for their observed antioxidant activity due to the way they can chelate iron ions and suppress the iron catalyzed hydrogen peroxide which is the most important source of free radicals in living organisms. Thus, although two phenolic acids may have the same relative polarity, their different functional groups will change the nature of their interactions with free radicals.

###

For more information about the article, please visit http://www.eurekaselect.com/148869

Reference: Morton, DW.; (2017). Probing into the Molecular Requirements for Antioxidant Activity in Plant Phenolic Compounds Utilizing a Combined Strategy of PCA and ANN. Combinatorial Chemistry & High Throughput Screening., DOI: 10.2174/1386207320666170102123146

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Modulated Parallel Photon Avalanche Enables Multicolor Nanoscopy

Modulated Parallel Photon Avalanche Enables Multicolor Nanoscopy

October 2, 2025

Exploring ICU Nurses’ CRRT Downtime Management Insights

October 2, 2025

New Paradigm in Bacteroidota Protein Biogenesis

October 2, 2025

Link Between AIP and T2DM in NAFLD Patients

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Modulated Parallel Photon Avalanche Enables Multicolor Nanoscopy

Exploring ICU Nurses’ CRRT Downtime Management Insights

New Paradigm in Bacteroidota Protein Biogenesis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.