• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

A cell for a cell

Bioengineer by Bioengineer
October 29, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To build the prison, a laser is used to initiate a radical reaction where a photosensitiser, methylene blue, cross-links protein monomers together to form a hydrogel structure. The cross-linking only occurs close to the focus of the laser beam, so the researchers can build up the walls by raising the focus step-by-step, until the walls are about 10µm high. A roof is then created by scanning the laser across the top of the walls, trapping whatever is inside in a 6250µm3 size prison cell (video).

Current techniques for studying single cells rely on microfluidics, where cells suspended in a solution are passed through micro-scale paths and barriers which are designed to trap cells. ‘The real uniqueness about [our] approach is it’s targeted isolation of single cells, unlike all the competing approaches … where you might stochastically trap a cell,’ Kaehr explains. ‘Here, if we have a rare environmental cell that may show up one in a million, we can screen for that and target that specific cell in one of these chambers and then do single cell chemistry or analysis.’

The chamber is constructed in such a way that nutrients and waste products can diffuse in and out, but other cells can’t enter. As a result, the trapped cell is free to replicate without interference from other cells. Within a few days, a cell can replicate so many times that the chamber fills and the roof bulges outwards.

The team tested this technique on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, as well as yeast (Saccharomyces cerevisae). With the current setup, only one in three cells that are isolated can survive and reproduce. This could be due to several factors, but the main issue is the formation of toxic reactive oxygen species produced by the radical reaction.

However, David Weitz, of Harvard University, US, says: ‘When I read it, I just thought “It’s beautiful, it’s lovely, but what would I do with it?” and I haven’t got an answer.’ Kaehr has a few ideas, including studying cell signalling, but is still on the lookout for other applications. ‘I’m in the game of trying to develop techniques for biology. This is a nice technique where we can shop around and see what are the interesting problems that biologists have.’ 

Source: rsc.org

Photo: ACS
Reference: K C Harper et al, Anal. Chem., 2012, DOI: 10.1021/ac301816c

Share12Tweet8Share2ShareShareShare2

Related Posts

Gut γδ T17 Cells Drive Brain Inflammation via STING

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025
blank

Agent-Based Framework for Assessing Environmental Exposures

August 2, 2025

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

August 2, 2025

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.